首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bis(dimethylamino)trifluoro sulfonium Salts: [CF3S(NMe2)2]+[Me3SiF2], [CF3S(NMe2)2]+ [HF2] and [CF3S(NMe2)2]+[CF3S] From the reaction of CF3SF3 with an excess of Me2NSiMe3 [CF3(NMe2)2]+[Me3SiF2] (CF3‐BAS‐fluoride) ( 5 ), from CF3SF3/CF3SSCF3 and Me2NSiMe3 [CF3S(NMe2)2]+‐ [CF3S] ( 7 ) are isolated. Thermal decomposition of 5 gives [CF3S(NMe2)2]+ [HF2] ( 6 ). Reaction pathways are discussed, the structures of 5 ‐ 7 are reported.  相似文献   

2.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

3.
Pyridine Complexes of Rare Earth Element Trichlorides. Syntheses and Crystal Structures of [YCl3(py)4] and [LnCl3(py)4] · 0.5 py with Ln = La and Er The pyridine complexes [YCl3(py)4] ( 1 ), [LaCl3(py)4] · 0.5 py ( 2 · 0.5 py), and [ErCl3(py)4] · 0.5 py ( 3 · 0.5 py) have been prepared from the diacetone‐alcohol complexes [LnCl3(DAA)2] or directly from the metal trichlorides with excess pyridine to give colourless, only sparingly moisture sensitive crystals. They were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group Pbca, Z = 16, lattice dimensions at –80 °C: a = 1647.4(1), b = 1743.1(1), c = 3190.5(1) pm, R1 = 0.031. 2 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 978.9(1), b = 1704.5(1), c = 1589.5(1) pm, β = 103.61(1)°, R1 = 0.0281. 3 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 970.1(1), b = 1706.4(1), c = 1566.1(1) pm, β = 103.46(1)°, R1 = 0.0232. All complexes realize monomeric molecular structures with the metal atom in a distorted pentagonal‐bipyramidal coordination. One of the chlorine atoms and the four pyridine molecules are in the equatorial plane.  相似文献   

4.
Synthesis and Crystal Structure of [KNPPh3]6 · 4 C7H8 [KNPPh3]6 · 4 C7H8 ( 1 ) has been prepared from HNPPh3 and potassium hydride in boiling toluene forming pale yellow moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P1, Z = 2, lattice dimensions at –83 °C: a = 1517.9(2), b = 1894.0(2), c = 2150,4(2) pm, α = 84.39(1)°, b = 89.31(1)°, c = 89.97(1)°, R1 = 0.0684. 1 forms a K6N6 skeleton of a double cube with a common face of two K and two N atoms, the latter being fivefold coordinated by four K atoms and the P atom of the PPh3 groups.  相似文献   

5.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

6.
The alkalimetal phosphoraneiminates [KNPCy3]4, ( 1 ) [KNPCy3]4·2OPCy3 ( 2 ) and [CsNPCy3]4·4OPCy3 ( 3 ) (Cy = cyclohexyl) which are obtainable by the reaction of pottassium amide or cesium amide with Cy3PI2 or Cy3PBr2 in liquid ammonia, as well as the lithium derivative [Li4(NPPh3)(OSiMe2NPPh3)3(DME)] ( 4 ) have been characterized by crystal structure determinations. 4 has been formed by the insertion reaction of silicon greaze (‐OSiMe2)n into the LiN bonds of [LiNPPh3]6 in DME solution (DME = 1, 2‐dimethoxyethane). 1 : Space group P&1macr;, Z = 2, lattice dimensions at 193 K: a = 1389.8(1); b = 1408.1(1); c = 2205.2(2) pm; α = 78.952(10)?; β = 81.215(10)?; γ = 66.232(8)?; R1 = 0.0418. 2 : Space group Pbcn, Z = 4, lattice constants at 193 K: a = 2943.6(2); b = 2048.2(1); c = 1893.8(1) pm; R1 = 0.0428. 3 : Space group Cmc21, Z = 4, lattice dimensions at 193 K: a = 2881.6(2); b = 2990.2(2); c = 1883.7(2) pm; R1 = 0.0586. 4 ·1/2DME: Space group R&3macr;c, Z = 12, lattice dimensions at 193 K: a = b = 1583.5(1); c = 11755.3(5) pm; R1 = 0.0495. All complexes have heterocubane structures. In 1‐3 they are formed by four alkali metal atoms and by the nitrogen atoms of the (μ3‐NPCy3) groups, whereas 4 forms a "heteroleptic" Li4NO3 heterocubane.  相似文献   

7.
Ho2O[SiO4] and Ho2S[SiO4]: Two Chalcogenide Derivatives of Holmium(III) ortho‐Oxosilicate Ho2O[SiO4] crystallizes monoclinically with the space group P21/c (a = 904.15(9), b = 688.93(7), c = 667.62(7) pm, β = 106.384(8)°, Z = 4) in the A‐type structure of rare‐earth(III) oxide oxosilicates. Yellow platelet‐shaped single crystals were obtained as by‐product during an experiment to synthesize Ho3Cl[SiO4]2 by reacting Ho2O3 and SiO2 in the ratio 4 : 6 with an excess of HoCl3 as flux at 1000 °C for seven days in evacuated silica ampoules. Both crystallographically different Ho3+ cations show coordination numbers of 8+1 and 7 with coordination figures of 2+1‐fold capped trigonal prisms and octahedra, in which one of the vertices changes to an edge by two instead of one coordinating atoms, respectively. The O2— anion not linked to silicon is surrounded tetrahedrally by four Ho3+ cations which built a layer parallel (100) by vertex‐ and edge‐sharing of the [OHo4]10+ units according to {[(O5)(Ho1)1/1(Ho2)3/3]4+}. Within rhombic meshes of these layers the isolated oxosilicate tetrahedra [SiO4]4— come to lie. Ho2S[SiO4] crystallizes orthorhombically in the space group Pbcm (a = 605.87(5), b = 690.41(6), c = 1064.95(9) pm, Z = 4). It also emerged as a single‐crystalline by‐product obtained during the synthesis of Ho2OS2 by reaction of a mixture of Ho2O3, Ho and S with the wall of the evacuated silica tube used as container with an excess of CsCl as flux at 800 °C. The structure of the yellow platelet‐shaped, air and water resistant crystals also distinguishes two Ho3+ cations with bicapped trigonal prisms and trigondodecahedra as coordination polyhedra for CN = 8. The S2— anions are almost square planar surrounded by four Ho3+ cations, but situated completely outside this plane. The [SHo4]10+ squares form strongly corrugated layers perpendicular to [100] by corner‐sharing according to {[(S)(Ho1)2/2(Ho2)2/2]4+}. Contrary to the oxide oxosilicates the isolated oxosilicate tetrahedra [SiO4]4— do not lie within the rhombic meshes of these layers, but above and below the (Ho2)3+ cations while viewing along [100].  相似文献   

8.
Synthesis and Crystal Structures of DyPt8P2 and Mg10?xPt9P7 Single crystals of DyPt8P2 (a = 9.260(2), b = 4.005(1), c = 9.633(2) Å, β = 102.64(3)°) were grown by heating the elements in a melt of NaCl/KCl at 1100 °C. The phosphide crystallizes in a new type of structure (I2/m; Z = 2) which consists of fragments in the shape of a cubic close packing built up by three fourths of the platinum atoms. The Dy atoms are coordinated by twelve Pt and four P atoms forming a distorted hexagonal prism which is fourfold capped by Pt atoms. Needles of Mg10?xPt9P7 (a = 18.121(4), b = 23.316(5), c = 3.848(1) Å) were obtained by reaction of the elements in molten lead at 1000 °C. The main feature of the new type of structure (Pbam; Z = 4) is an oval ring of pentagonal prisms formed by each six Pt and four P atoms. The prisms are linked with each other via common faces and they are centered by Mg atoms. Another Mg atoms are located in holes of the three‐dimensional [Pt9P7] network. It is remarkable, that one of the ten different crystallographic sites of the Mg atoms is occupied incompletely inducing the composition Mg10?xPt9P7 with x = 0.86.  相似文献   

9.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

10.
Rhenium Compounds Containing Heterocyclic Thiols – Syntheses and Structures Reactions of trans‐[ReOCl3(PPh3)2] with 1,3‐thiazoline‐2‐thiol (thiazSH), pyridine‐2‐thiol (pyrSH) or pyrimidine‐2‐thiol (pyrmSH) result in the formation of rhenium(V) oxo complexes or rhenium(III) species depending on the conditions applied. mer‐[ReOCl3(thiazSH)(OPPh3)], trans‐[ReCl3(PPh3)(thiazSH)2], [ReO(2‐propO)(PPh3)Cl(pyrS‐S,N)], cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] have been isolated from such reactions and structurally characterized. cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] are obtained in better yields by ligand substitution on trans‐[ReCl3(MeCN)(PPh3)2]. The reaction between (n‐Bu4N)[ReOCl4] and purine‐6‐thiol (purinSH) gives the oxo‐bridged [O{ReO(purinS‐S,N)2}2].  相似文献   

11.
Hydrogen Bonds with Cyanide Ions? The Structures of 1,3‐Diisopropyl‐4,5‐dimethylimidazolium Cyanide and 1‐Isopropyl‐3,4,5‐trimethylimidazolium Cyanide 1,3‐Diisopropyl‐4,5‐dimethylimidazolium cyanide ( 2a ) and 1‐isopropyl‐3,4,5‐trimethylimidazolium cyanide ( 2b ) are obtained from the reaction of the corresponding 2,3‐dihydrodimethylimidazol‐2‐ylidenes ( 1 ) and hydrogen cyanide in excellent yield. Their crystal structure analyses reveal the presence of ion pairs linked by hydrogen bonds. The crystal structure analysis of 2a reveals a near colinear orientation of the C(1)‐H bond axis and the cyanide ion while in 2b this orientation is perpendicular. In both cases, the interionic distances are in the expected range for hydrogen bonds. Ab‐initio calculations of the total energy of the salts 2 indicate small differences in energy between the colinear and perpendicular orientation of the ions as well as between the colinear C‐H···C‐N and C‐H···N‐C orientations. The comparison of calculated and measured 13C and 15N NMR chemical shifts does not allow the distinction between the possible orientations.  相似文献   

12.
Single Crystals of La[AsO4] with Monazite‐ and Sm[AsO4] with Xenotime‐Type Structure Brick‐shaped, transparent single crystals of colourless monazite‐type La[AsO4] (monoclinic, P21/n, a = 676.15(4), b = 721.03(4), c = 700.56(4) pm, β =104.507(4)°, Z = 4) and pale yellow xenotime‐type Sm[AsO4] (tetragonal, I41/amd, a = 718.57(4), c = 639.06(4) pm, Z = 4) emerge as by‐products from alkali and rare‐earth metal chloride fluxes whenever the synthesis of lanthanide(III) oxoarsenate(III) derivatives from admixtures of the corresponding sesquioxides in sealed, evacuated silica ampoules is accompanied by air intrusion and subsequent oxidation. Nine oxygen atoms from seven discrete [AsO4]3? tetrahedra recruit the rather irregular coordination sphere of La3+ (d(La3+?O2?) = 248 – 266 pm plus 291 pm) and even a tenth ligand could be considered at a distance of 332 pm. The trigonal dodecahedral figure of coordination consisting of eight oxygen atoms at distances of 236 and 248 pm (4× each) about Sm3+ is provided by only six isolated tetrahedral [AsO4]3? units. Alternating trans‐edge condensation of the latter with the [LaO9+1] polyhedra of monazite‐type La[AsO4] and the [SmO8] polyhedra of xenotime‐type Sm[AsO4] constitutes the main structural chain features along [100] or [001], respectively. The bond distances and angles of the complex [AsO4]3? anions range within common intervals (d(As5+?O2?) = 167 – 169 pm, ?(O–As–O) = 100 – 116°) for both lanthanide(III) oxoarsenates(V) presented here.  相似文献   

13.
Synthesis and Crystal Structures of the Complexes trans ‐[CoIII(py)4F2][H2F3] and [Pd(py)4]F2 · 1.5 HF · 2 H2O The cobalt complex trans‐[Co(III)(py)4F2][H2F3] ( 1 ) has been prepared by electrochemical oxidation of CoF2 in a pyridine/HF mixture and the palladium complex [Pd(py)4]F2 · 1.5 HF · 2 H2O ( 2 ) has been obtained via halogen exchange between Pd(py)2Cl2 and AgF2 in pyridine. 1 and 2 crystallize in the space group C2/c with a = 27.928(14), b = 9.019(3), c = 18.335(8) Å, β = 113.41(3)° for 1 and a = 28.183(9), b = 9.399(3), c = 17.397(6) Å, β = 104.66(3)° for 2 , respectively. Concerning the shape and location of the M(py)4 fragments 1 and 2 are isostructural. The metal atoms occupy special positions in their unit cells with the result that four complex atoms have C2 symmetry and four complex cations have Ci symmetry giving a total of Z = 8. In 1 two F ions complete an octahedral coordination around the Co atoms (Co–F 1.820(2) to 1.834(3) Å). In 2 the shortest Pd–F distance is 3.031(2) Å. This precludes the existence of Pd–F bonds. In 1 one can identify H2F3 groups. In 2 there are larger aggregates, consisting of F, HF, and H2O subunits, connected by H‐bridges. In spite of these differences, both complexes belong to the same type of structure, which may be of a common type Mx+(py)4Fx · y HF · z H2O.  相似文献   

14.
Syntheses and Structures of Transition Metal Complexes with Dithiophosphinato and Trithiophosphinato Ligands The reactions of MnCl2 with Ph2P(S)(SSiMe3) produced [Mn(S2PPh2)2(thf)2] ( 1 ) and [Mn(S2PPh2)2(dme)] ( 2 ) (DME = 1,2‐Dimethoxyethane). The compounds [Co6(S3PPh)24‐S)23‐S)2(PPh3)4] ( 3 ), [Co2(S3PPh)2(PPh3)2] ( 4 ), [Ni(S2PPh)(PPhEt2)2] ( 5 ), [Ni(S3PPh)(PPhEt2)2] ( 6 ) and [Cu4(S3PPh)2(dppp)2] ( 8 ) [dppp = 1,3‐Bis(diphenylphosphanyl)propane] were obtained from reactions of first‐row transition metal halides with PhP(S)(SSiMe3)2 in the presence of tertiary phosphines. In a reaction of PhP(S)(SSiMe3)2 with PhPEt2 PhPEt2PS2Ph ( 7 ) was isolated. All compounds were characterized by X‐ray crystallography.  相似文献   

15.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

16.
Organometallic 5d6 Transition Metal Complexes of 1‐Methyl‐(2‐alkylthiomethyl)‐1H‐benzimidazole Ligands: Structures and Electrochemical Oxidation The complexes [(mmb)Re(CO)3Cl], [(mtb)Re(CO)3Cl], [(mmb)OsCl(Cym)](PF6) and [(Cym)OsCl(mtb)](PF6) where Cym = p‐cymene, mmb = 1‐methyl‐(2‐methylthiomethyl)‐1H‐benzimidazole and mtb = 1‐methyl‐(2‐tert‐butylthiomethyl)‐1H‐benzimidazole were synthesized and, except for the latter, structurally characterized. In comparison with other late transition metal compounds of these N‐S chelate ligands the rhenium(I) systems exhibit a balanced coordination to both N and S donor atoms. Anodic one‐electron oxidation produces EPR‐silent rhenium(II) states whereas the osmium(III) species [(mmb)OsCl(Cym)]2+ could be identified via EPR and UV/VIS spectroelectrochemistry.  相似文献   

17.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN] The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN] ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311.  相似文献   

18.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms.  相似文献   

19.
Preparation and Crystal Structure of Ethylenediammonium Selenostannates(IV) and [2 SnSe2 · en]∞ The selenostannates(IV) [enH2]2[Sn2Se6] · en 1 and [enH2][Sn3Se7] · 1/2en 2 have been prepared by the methanolothermal reaction of SnSe2 with ethylenediamine (en) (160°C, 13 bar) in the presence of respectively Se or BaSe. The [Sn2Se6]4? anion in 1 consists of two edgebridged SnSe4 tetrahedra and displays crystallographic Ci symmetry. The crystal structure of 2 contains polyselenostannate(IV) sheet anions [Sn2Se72], for which the basic elements are trigonal SnSe5 bipyramids. Each of the three symmetry independent Sn atoms is linked to the other Sn atoms via Sn? Se? Sn bridges leading to the formation of Sn3Se10 units. Methanolothermal reaction of SnSe2 with en alone yields the edge-bridged chain structure [2 SnSe2 en]∞ 3 , in which each of the Sn atoms is bonded to four Se atoms. Every second Sn atom is also coordinated by an en molecule and displays, therefore, an octahedral geometry. The remaining Sn atoms are coordinated tetrahedrally by Se atoms.  相似文献   

20.
A New Synthesis and the Crystal Structure of Hexaphenyl‐cyclo‐triphosphazene, [NPPh2]3 · THF [NPPh2]3 · THF ( 1 · THF) has been prepared from KNPPh3 in THF solution in the presence of MoO3 and 18‐crown‐6. According to the crystal structure determination all structural parameters are similar to known symmetric substituted cyclo‐triphosphazenes. The dihedral angles of the phenyl groups with the “best plane” P3N3 lie between 50 and 67°. 1 · THF: Space group P 1, Z = 2, lattice dimensions at –80 °C: a = 1146.5(1), b = 1360.5(1), c = 1382.9(1) pm, α = 108.06(1)°, β = 103.32(1)°, γ = 112.19(1)°, R1 = 0.0441.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号