首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

2.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

3.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

4.
The selenites, Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4, were synthesized under hydrothermal conditions. The crystal structures of Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4 were determined by single‐crystal X‐ray diffractions. Na2Be3(SeO3)4 · H2O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Å, and Z = 2, whereas Cs2[Mg(H2O)6]3(SeO3)4 crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Å, and Z = 2. Na2Be3(SeO3)4 · H2O features a three‐dimensional open framework structure formed by BeO4 tetrahedra and SeO3 trigonal pyramids. Na cations and H2O molecules are located in different tunnels. Cs2[Mg(H2O)6]3(SeO3)4 has a structure composed of isolated [Mg(H2O)6] octahedra and SeO3 trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in‐between. Both compounds were characterized by thermogravimetric analysis and FT‐IR spectroscopy.  相似文献   

5.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

6.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

7.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

8.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

9.
A new coordination complex, [Co(DAT)2(H2O)4](HTNR)2 · 2H2O [DAT = 1,5‐diaminotetrazole, HTNR = 2,4,6‐trinitroresorcinol (styphnic acid)], was obtained in high yield and characterized by elemental analysis and Fourier‐transform infrared (FT‐IR) spectroscopy. The molecular structure of [Co(DAT)2(H2O)4](HTNR)2 · 2H2O in the crystalline state is determined by X‐ray crystallography is as follows: monoclinic, C2/c, a = 19.216(3) Å, b = 5.4992(8) Å, c = 30.418(5) Å, β = 104.500(5), V = 3112.0(8) Å3, Z = 4, ρcalc. = 1.851 g · cm–3, R1 = 0.0271 and wR2 = (all data) 0.0674. The central cobalt(II) cation is coordinated by two nitrogen atoms of two DAT and four oxygen atoms of four H2O ligand molecules to form a six‐coordinate and slightly distorted octahedral structure. Extensive intermolecular hydrogen bonds link molecular units of [Co(DAT)2(H2O)4(HTNR)2 · 2H2O together to form a 3D net structure with pore canals. The thermal decomposition mechanism for the title compound was predicted based on DSC, TG‐DTG, and FT‐IR analyses and non‐kinetic parameters of the first exothermic process were estimated by applying the Kissinger, Starink, and Ozawa–Doyle methods.  相似文献   

10.
New neptunium(VI) complex {H3NCH2CH(NH3)CH3}[(NpO2)2(CrO4)3(H2O)] · 3H2O is synthesized; its crystal structure is determined and IR and near-IR absorption spectra are recorded. The crystallographic data are: a = 10.805(2) Å, b = 11.238(2) Å, c = 17.615(8) Å, space group P212121, Z = 4, V = 2139(1) Å3, R = 0.051, wR(F 2) = 0.109. The crystal structure of the compound is built of the anionic layers of [(NpO2)2(CrO4)3(H2O)]2n n . The {H3NCH2CH(NH3)CH3}2+ cations and crystallization water molecules are arranged between the layers. Coordination polyhedron of two crystallographically independent Np atoms has the shape of a pentagonal bipyramid. The equatorial plane in one Np polyhedron is formed by the oxygen atoms of four chromate ions and water molecule and by the oxygen atoms of five chromate ions in the other one.  相似文献   

11.
By slow evaporation of solutions containing UO2(ClO4)2 and an excess of HClO4, single crystals of [UO2(ClO4)2(H2O)3] ( 1 ) and [UO2(H2O)5](ClO4)2 ( 2 ) were obtained and their structures were determined. From similar solutions prepared from stoichiometric amounts of UO3 and perchloric acid, crystals of [UO2(H2O)5](ClO4)2·2H2O ( 3 ) were obtained. The trihydrate (monoclinic, P21/c, a = 545.44(1) pm, b = 1811.09(5) pm, c = 1032.46(2) pm, β = 90.016(1)°) consists of uranyl ions, which are coordinated by two monodentate perchlorate ions and three water molecules. The pentahydrate (monoclinic, P21/n, a = 529.35(2) pm, b = 1645.43(6) pm, c = 1480.18(6) pm, β = 99.847(1)°) contains uranyl ions coordinated by five water molecules. The same structural unit can be found in the heptahydrate, whose structure was re‐determined (orthorhombic, Pbcn, a = 920.9(3) pm, b = 1067.9(3) pm, c = 1445.7(3) pm). In this structure, two molecules of water of crystallization are present.  相似文献   

12.
The compound [Co(En)3]2[Hg2(H2O)Cl6]Cl4 (I, En is ethylenediamine) has been synthesized and studied by X-ray diffraction. The crystals of I (a = 21.8745(14) Å, b = 10.6008(6) Å, c=15.4465(12) Å, space group Pna21) consist of tris(ethylenediamine)cobalt(III) complexes (the unit cell contains two [Co(En)3]3+ cations of opposite chirality). [Hg2(H2O)Cl6]2? anions, and isolated chloride ions. The complex anion consists of the tetrahedral [HgCl4]2? group (Hg-Cl, 2.44–2.56 Å) and the hydrated molecule [Hg(H2O)Cl2] (Hg-Cl, 2.301 and 2.308 Å; Hg-O, 2.788 Å) combined by weak Hg-Cl interactions (2.915 and 3.220 Å).  相似文献   

13.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

14.
Blue crystals of Cu2(phen)2(H2O)2(C5H6O4)2 were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), glutaric acid and Na2CO3. The crystal structure (monoclinic, P21/c (no. 14), a = 10.271(1), b = 10.595(1), c = 15.585(1) Å, β = 107.105(3)°, Z = 2, R = 0.0328, wR2 = 0.1027 for 3376 observed reflections (F ≥ 2σ(F ) out of 3728 unique reflections) is built up of dinuclear Cu2(phen)2(H2O)2(C5H6O4)2 complex molecules centered at inversion centers. The Cu atoms are square‐pyramidally coordinated by two nitrogen atoms of one bidentate chelating phen ligand and three oxygen atoms from two bridging glutarate anions and one axial water molecule (d(Cu–N) = 2.018(2), 2.024(2) Å; basal d(Cu–O) = 1.949(2), 1.956(2) Å; axial d(Cu–O) = 2.382(2) Å). Through the π‐π stacking interactions extending in a direction, the complex molecules are interlinked into 2 D layers parallel to the ac plane. The resultant 2 D layers are held together by hydrogen bonds between water molecules and uncoordinated carboxyl oxygen atoms.  相似文献   

15.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

16.
Dimethylsulfoxide Complexes of Beryllium(II) Chloride. Crystal Structures of [Be(OSMe2)4]Cl2, [Be(OSMe2)3(H2O)]Cl2 and [Be(OSMe2)2(H2O)2]Cl2 Single crystals of the mixed ligand complexes [Be(OSMe2)3(H2O)]Cl2 ( 2 ) and [Be(OSMe2)2(H2O)2]Cl2 ( 3 ) were obtained from saturated solutions of [Be(OSMe2)4]Cl2 ( 1 ) in acetonitrile and dichloromethane, respectively, in the presence of traces of water, while single crystals of 1 were available by reaction of the carbodiphosphorane complex [BeCl2{C(PPh3)2}] with DMSO/toluene solution. All complexes are characterized by X‐ray diffraction and IR spectroscopy. 1 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 962.4(1), b = 1888.8(2), c = 2115.8(2) pm, R1 = 0.0344. 1 consists of [Be(OSMe2)4]2+ cations with distorted tetrahedral coordination of the oxygen atoms of the DMSO molecules with Be–O distances of 161.9 pm on average, and chloride ions. 2 : Space group , Z = 2, lattice dimensions at 193 K: a = 903.9(2), b = 925.2(3), c = 1121.3(3) pm, α = 93.65(3)°, β = 108.03(3)°, γ = 115.20(3)°, R1 = 0.0472. 3 : Space group , Z = 2, lattice dimensions at 173 K: a = 788.2(2), b = 801.6(2), c = 1070.7(3) pm, α = 86.66(2)°, β = 83.80(2)°, γ = 71.00(2)°, R1 = 0.0699. 2 and 3 also form dications with distorted tetrahedral coordination of the Be2+ ions by the oxygen atoms of DMSO and water molecules, respectively. The chloride ions are associated by strong hydrogen bonds O–H···Cl to give three‐dimensional networks.  相似文献   

17.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

18.
Crystals of four amine‐templated layered uranyl selenates, [C2H10N2][(UO2)(SeO4)2(H2O)](H2O) ( 1 ), [CH6N3]2[(UO2)(SeO4)2(H2O)](H2O)1.5 ( 2 ), [C4H12N]2[(UO2)(SeO4)2(H2O)] ( 3 ), and [CH6N3]3[(UO2)2(SeO4)2(H(SeO4)2)](H2O)2 ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The structures of all four compounds have been solved by direct methods. The structures of 1 (monoclinic, C2/c, a = 11.787(2), b = 7.7007(10), c = 16.600(3) Å, β = 102.016(14)°, V = 1473.7(4) Å3, R1 = 0.037 for 1743 unique observed reflections), 2 (monoclinic, C2/c, a = 37.314(4), b = 7.1771(6), c = 13.2054(14) Å, β = 109.267(8)°, V = 3338.4(6) Å3, R1 = 0.088 for 3005 unique observed reflections) and 3 (monoclinic, C2/c, a = 27.212(10), b = 7.372(3), c = 23.113(7) Å, β = 117.75(2)°, V = 4103(3) Å3, R1 = 0.073 for 2111 unique observed reflections) are based on sheets of the composition [(UO2)(SeO4)2(H2O)]2? consisting of pentagonal [UO7]8? pentagonal bipyramids linked via [SeO4]2? tetrahedra. The sheets have the same chemical composition but different topologies. The structure of 4 (orthorhombic, P212121, a = 10.7261(9), b = 13.918(2), c = 18.321(2) Å, V = 2735.1(5) Å3, R1 = 0.050 for 5683 unique observed reflections) contains [(UO2)2(SeO4)2(H(SeO4)2)]3? sheets parallel to (001). In all four structures, the layers are connected via protonated amine and H2O molecules.  相似文献   

19.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

20.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号