首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the reaction conditions leading to γ‐Li7VN4, no ordered solid solution γ‐Li7VN4–Li2O seems to exist but rather a mixture of two phases: γ‐Li7VN4 and a lithium vanadium oxynitride with the disordered anti‐fluorite structure. Even though the trend may be different in the case of β‐Li7VN4–Li2O, neutron diffraction experiments would be desirable to confirm/dismiss these assumptions, as they would allow to determine the number of phases and polymorphs present and the degree of Li/V or N/O order, if any.  相似文献   

2.
Based on experimental data it is shown that samples in a solid solution series of the system Li7[VN4]–Li2O with partial Li–V order can be obtained.  相似文献   

3.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

4.
For lithium halides, LiX (X = Cl, Br and I), hydrates with a water content of 1, 2, 3 and 5 moles of water per formula unit are known as phases in aqueous solid–liquid equilibria. The crystal structures of the monohydrates of LiCl and LiBr are known, but no crystal structures have been reported so far for the higher hydrates, apart from LiI·3H2O. In this study, the crystal structures of the di‐ and trihydrates of lithium chloride, lithium bromide and lithium iodide, and the pentahydrates of lithium chloride and lithium bromide have been determined. In each hydrate, the lithium cation is coordinated octahedrally. The dihydrates crystallize in the NaCl·2H2O or NaI·2H2O type structure. Surprisingly, in the tri‐ and pentahydrates of LiCl and LiBr, one water molecule per Li+ ion remains uncoordinated. For LiI·3H2O, the LiClO4·3H2O structure type was confirmed and the H‐atom positions have been fixed. The hydrogen‐bond networks in the various structures are discussed in detail. Contrary to the monohydrates, the structures of the higher hydrates show no disorder.  相似文献   

5.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

6.
刘华亭  陈汝芬  宋秀芹 《中国化学》2002,20(12):1536-1539
Introduction  InthesearchfornewLi+ ionconductingsolidswithpotentialapplicationsassolidelectrolytesinhigh energydensitybatteries ,considerableworkhasbeendoneonavarietyofLi+ ionelectrolytes .Li4 SiO4 basedsolidsolu tionsarewellknownfortheirgreatincreaseincon…  相似文献   

7.
Thermogravimetric and difference thermal analyses show that the reactions of lithium nitride with the transition metals Cu and Ni under molecular nitrogen to form phases Li2[(Li1‐xMIx)N] take place above 673 K. The maximum weight gains are reached at 926 K and 968 K for M = Cu and Ni, respectively. At higher temperatures, the ternary phases Li2[(Li1‐xMIx)N] decompose, limiting the substitutional level x. In the temperature range of 773 K — 873 K, the successful synthesis of Li2[(Li1‐xNiIx)N] (0 < x ≤ 0.85(1)) single phase products is demonstrated. Maximum substitution obtained for the Cu phases is xmax= 0.43(1). The dependence of the lattice parameters of the hexagonal unit cell on x is almost linear. The magnetic moment of M strongly depends on x. At low x the magnetic moments in phases with M = Ni are presumably enhanced by orbital effects. A decrease of μeff with x to μeff(x = 1) → 0 is explained by delocalization of the magnetic moments and by the gradual formation of a metal for the hypothetical compound Li2[NiN] (x = 1). XAS spectroscopy at the transition metal K‐edges shows that Cu and Ni principally correspond to d10‐ and d9‐configurations, respectively.  相似文献   

8.
Investigations on the Crystal Structure of Lithium Dodecahydro‐closo‐dodecaborate from Aqueous Solution: Li2(H2O)7[B12H12] By neutralization of an aqueous solution of the acid (H3O)2[B12H12] with lithium hydroxide (LiOH) and subsequent isothermic evaporation of the resulting solution to dryness, it was possible to obtain the heptahydrate of lithium dodecahydro‐closo‐dodecaborate Li2[B12H12] · 7 H2O (≡ Li2(H2O)7[B12H12]). Its structure has been determined from X‐ray single crystal data at room temperature. The compound crystallizes as colourless, lath‐shaped, deliquescent crystals in the orthorhombic space group Cmcm with the lattice constants a = 1215.18(7), b = 934.31(5), c = 1444.03(9) pm and four formula units in the unit cell. The crystal structure of Li2(H2O)7[B12H12] can not be described as a simple AB2‐structure type. Instead it forms a layer‐like structure analogous to the well‐known barium compound Ba(H2O)6[B12H12]. Characteristic feature is the formation of isolated cation pairs [Li2(H2O)7]2+ in which the water molecules form two [Li(H2O)4]+ tetrahedra with eclipsed conformation, linked to a dimer via a common corner. The bridging oxygen atom (∢(Li‐ O ‐Li) = 112°) thereby formally substitutes Ba2+ in Ba(H2O)6[B12H12] according to (H2 O )Li2(H2O)6[B12H12]. A direct coordinative influence of the [B12H12]2— cluster anions to the Li+ cations is not noticeable, however. The positions of the hydrogen atoms of both the water molecules and the [B12H12]2— units have all been localized. In addition, the formation of B‐Hδ—···δ+H‐O‐hydrogen bonds between the water molecules and the hydrogen atoms from the anionic [B12H12]2— clusters is considered and their range and strength is discussed. The dehydratation of the heptahydrate has been investigated by DTA‐TG measurements and shown to take place in two steps at 56 and 151 °C, respectively. Thermal treatment leads to the anhydrous lithium dodecahydro‐closo‐dodecaborate Li2[B12H12], eventually.  相似文献   

9.
The crystal structure of the title compound, lithium (1‐carboxy­ethenyl­oxy)­phospho­nate monohydrate, Li+·C3H4O6P?·­H2O, is governed by lithium–oxy­gen interactions and hydrogen bonds. The Li+ cation is tetrahedrally coordinated by phosphate and water O atoms. The phospho­enolpyruvate monoanions form carboxyl‐to‐carboxyl and phosphate‐to‐water hydrogen bonds.  相似文献   

10.
Li‐O2 batteries are promising energy storage systems due to their ultra‐high theoretical capacity. However, most Li‐O2 batteries are based on the reduction/oxidation of Li2O2 and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon‐based materials. It is important to explore lithium‐oxygen reactions and find new Li‐O2 chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme‐catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N‐CuI (3 N=1,4,7‐trimethyl‐1,4,7‐triazacyclononane) to Li‐O2 batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O?O bonds. This work demonstrates that the reaction pathways of Li‐O2 batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li‐O2 batteries.  相似文献   

11.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   

12.
《Chemphyschem》2003,4(4):343-348
Lithium ionic conductivity and phase transitions in a series of lithium halides hydrates and hydroxides with general formula Li3‐n(OHn)X (0.83≤n≤2; X=Cl,Br) were studied using impedance measurements and 1H and 7Li NMR spectroscopy. All compounds studied in this work crystallize in the antiperovskite structure or are closely related to this structure type. With the exception of LiCl?H2O, all compounds with integer lithium content exhibit good lithium ionic conductivity in their high temperature cubic phases above T=33 °C. Lithium doping of samples LiX?H2O and Li2(OH)X leads to a suppression of the phase transition into the noncubic phases and the good ionic conductivity is extended down to lower temperatures (T<0 °C). Thus, lithium doping of the lithium halide hydrates provides a promising tool for tailoring the ionic conductivity at ambient temperatures to its optimum value.  相似文献   

13.
Organic electrode materials are promising for green and sustainable lithium‐ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all‐solid‐state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li3PS4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4‐(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB.  相似文献   

14.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

15.
16.
应用红外及拉曼光谱研究了不同浓度的四氟硼酸锂在4-乙氧甲基-碳酸乙烯酯溶剂中的离子溶剂化和离子缔合现象。环形变谱带和羰基伸缩振动谱带的分裂,以及骨架环振动谱带的迁移和分裂表明,锂离子与溶剂分子间存在着较强的相互作用,这种相互作用是通过溶剂羰基氧原子实现的。利用光谱拟合技术定量计算了表观溶剂化数。随着电解质锂盐浓度的增加,溶剂化数逐渐由4.32降至1.26。此外,四氟硼酸根v1谱带的分裂表明在高浓度溶液中存在着光谱自由的四氟硼酸根、直接接触离子对和离子对二聚体。  相似文献   

17.
Peony‐like spinel Li4Ti5O12 was synthesized via calcination of precursor at the temperature of 400°C, and the precursor was prepared through a hydrothermal process in which the reaction of hydrous titanium oxide with lithium hydroxide was conducted at 180°C. The as‐prepared product was investigated by SEM, TEM and XRD, respectively. As anode material for lithium ion battery, the Li4Ti5O12 obtained was also characterized by galvanostatic tests and cyclic voltammetry measurements. It is found that the peony‐like Li4Ti5O12 exhibited high rate capability of 119.7 mAh·g−1 at 10 C and good capacity retention of 113.8 mAh·g−1 after 100 cycles at 5 C, and these results indicate the peony‐like Li4Ti5O12 has promising applications for lithium ion batteries with high performance.  相似文献   

18.
The 1,3‐Dimethylcyanurate Ion as an Ambident Ligand 1,3‐Dimethyl‐2,4,6‐trioxo‐1,3,5‐triazin ( 7 ), (1,3‐dimethylcyanuric acid, DMCH), obtained from the thermolysis of methyl urea, is deprotonated with lithium ethylate. In the resulting dinuclear complex [(DMCLi)2·4 H2O] ( 8 ), the heterocyclic anions are linked to the lithium centres with oxygen atoms as its enolate form. In the corresponding silver complex [(DMCAg)2·en] ( 10 ), (en = ethylendiamine), N‐coordination of the ligand is observed. The crystal structures of 7 , 8 , and 10 reveal the presence of intermolecular hydrogen bonds.  相似文献   

19.
Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.  相似文献   

20.
The solubilities and solid phases in the Li2Mo3O10-CO(NH2)2-H2O system at 25°C are studied. A compound of composition Li2Mo3O10 · 6CO(NH2)2 · 4H2O and lithium trimolybdate decahydrate Li2Mo3O10 · 10H2O are found to exist. The Li2Mo3O10 · 6CO(NH2)2 · 4H2O ray crosses the solubility isotherm, which indicates the congruent solubility of the double compound in water. The density, refractive index, dynamic viscosity, surface tension, electrical conductivity, and pH of saturated solutions of the system are determined. The molar volume, equivalent electrical conductivity, reduced conductivity, and solution ionic strength isotherms are calculated. A strong correlation between all the property isotherms and the solubility is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号