首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Lindlar catalyst is a popular heterogeneous catalyst that consists of 5?wt.% palladium supported on porous calcium carbonate and treated with various forms of lead and quinoline. The additives strategically deactivate palladium sites. The catalyst is widely used for the partial hydrogenation of acetylenic compounds in organic syntheses. Alkyne reduction is stereoselective, occurring via syn addition to give the cis-alkene. Even if it has been employed for about 60?years, there is a lack of molecular level understanding of the Lindlar catalyst. We have applied density functional theory simulations to understand the structure and the nature of the interplay between the multiple chemical modifiers in the Lindlar catalyst. Indeed, the poisons influence different parameters controlling selectivity to the alkene: Pb modifies the thermodynamic factor and hinders the formation of hydrides, while quinoline isolates Pd sites thus minimizing oligomerization.  相似文献   

2.
Mixed-ligand Cu2+ ternary complexes, formed by an aromatic diimine and a second ligand with O donor atoms, show a higher than expected stability. To understand the factors affecting the stability of these systems, we performed a density functional study of [Cu(H2O)5]2+, [Cu(N-N)(H2O)3]2+, and [Cu(N-N)(O-O)H2O] (N-N is 1,10-phenanthroline, 5-nitro-1,10-phenanthroline, or 3,4,7,8-tetramethyl-1,10-phenanthroline; and O-O is oxalate). In the present study, full geometry optimization (B3LYP/3-21G**) has been performed without symmetry constraints and a comparison with some available experimental results has been made. Bond distances, equilibrium geometries, harmonic frequencies, and net atomic charges from Mulliken populations are presented. Since the principle of hard and soft acids and bases has been widely used to explain the stability of these complexes, we also calculated and analyzed the global hardness and the local softness. The results of the global hardness do not support the commonly held idea that harder acids will preferably bind to harder ligands, while softer acids will bind to softer ligands. Interestingly, local softness and electron affinity correlate well with the formation constants of these compounds and provide an explanation of the reactivity behavior. The present results may help to rationalize the stability and reactivity of these systems.  相似文献   

3.
4.
Frozen density embedding (FDE) theory is one of the major techniques aiming to bring modeling of extended chemical systems into the realm of high accuracy calculations. To improve its accuracy it is of interest to develop kinetic energy density functional approximations specifically for FDE applications. In the study reported here we focused on optimizing parameters of a generalized gradient approximation-like kinetic energy functional with the purpose of better describing electron excitation energies. We found that our optimized parametrizations, named excPBE and excPBE-3 (as these are derived from a Perdew-Burke-Ernzerhof-like parametrization), could not yield improvements over available functionals when applied on a test set of systems designed to probe solvatochromic shifts. Moreover, as several different functionals yielded very similar errors to the simple local-density approximation (LDA), it is questionable whether it is worthwhile to go beyond the LDA in this context.  相似文献   

5.
Journal of Radioanalytical and Nuclear Chemistry - Influence of substitutional Fe, Al and Mg atoms on the corrosion of α-U(110) surface was studied by DFT?+?U method. The...  相似文献   

6.
It is proposed that the electrofugality of a fragment within a molecule is determined by its group nucleophilicity. The variation of electrofugality should be tightly related to the electron releasing ability of the substituent attached to the electrofuge moiety. This contribution closes the set of relationships between philicity and fugality quantities: while nucleofugality appears related to the group electrophilicity of the leaving group, electrofugality is related to the group nucleophilicity of the permanent group.  相似文献   

7.
The mechanisms for the addition reactions of phenylhalocarbenes and phenyldihalomethide carbanions with acrylonitrile (ACN) and trimethylethylene (TME) have been investigated using an ab initio BH and HLYP/6-31G (d, p) level of theory. Solvent effects on these reactions have been explored by calculations that included a polarizable continuum model (PCM) for the solvent (THF). These model calculations show that for the addition of phenylhalocarbenes, a TME species may readily undergo addition reactions with carbenes while ACN has a high-energy barrier to overcome. It was also found that phenyldihalomethide carbanions do not readily add to the electron-rich TME. The cyclopropane yields only appear to occur via addition of PhCBr to TME. However, the cyclopropanation proceeds not only via slow addition of phenylhalocarbenes to ACN but also forms through the stepwise reaction of phenyldihalomethide carbanions with ACN. Our calculation results are in good agreement with experimental observations (Moss, R.A.; Tian, J.-Z. J. Am. Chem. Soc. 2005, 127, 8960) that indicate that the cyclopropanation of phenylhalocarbenes and phenyldihalomethide carbanions with ACN are concurrent in THF.  相似文献   

8.
We explore here the feasibility of employing molecular iodine as Lewis acid catalyst for Diels–Alder (DA) reaction using conceptual density functional theory (DFT) based reactivity indices and transition state analysis at the DFT (B3LYP)/6-31G(d) level of theory. Catalytic effect of iodine is probed using reactivity indices considering six different substituents for the diene at the 2-position and five different substituents at the 1-position of the olefinic dienophile. Comparison of HOMO diene–LUMO dienophile gap between the catalyzed and uncatalyzed processes confirms catalytic effect of iodine in DA reaction. Mechanistic details of both the uncatalyzed and the iodine catalyzed processes is achieved through transition state analysis for four possible stereoisomeric reactive channels with respect to isoprene–acrolein model reaction. A significant cutback in activation barrier is observed in presence of iodine. Influence of iodine on regioselectivity of the reaction and asynchronicity of bond formation is analyzed using local version of the HSAB principle and philicity index.  相似文献   

9.
10.
11.
To examine how azole inhibitors interact with the heme active site of the cytochrome P450 enzymes, we have performed a series of density functional theory studies on azole binding. These are the first density functional studies on azole interactions with a heme center and give fundamental insight into how azoles inhibit the catalytic function of P450 enzymes. Since azoles come in many varieties, we tested three typical azole motifs representing a broad range of azole and azole-type inhibitors: methylimidazolate, methyltriazolate, and pyridine. These structural motifs represent typical azoles, such as econazole, fluconazole, and metyrapone. The calculations show that azole binding is a stepwise mechanism whereby first the water molecule from the resting state of P450 is released from the sixth binding site of the heme to create a pentacoordinated active site followed by coordination of the azole nitrogen to the heme iron. This process leads to the breaking of a hydrogen bond between the resting state water molecule and the approaching inhibitor molecule. Although, formally, the water molecule is released in the first step of the reaction mechanism and a pentacoordinated heme is created, this does not lead to an observed spin state crossing. Thus, we show that release of a water molecule from the resting state of P450 enzymes to create a pentacoordinated heme will lead to a doublet to quartet spin state crossing at an Fe-OH(2) distance of approximately 3.0 A, while the azole substitution process takes place at shorter distances. Azoles bind heme with significantly stronger binding energies than a water molecule, so that these inhibitors block the catalytic cycle of the enzyme and prevent oxygen binding and the catalysis of substrate oxidation. Perturbations within the active site (e.g., a polarized environment) have little effect on the relative energies of azole binding. Studies with an extra hydrogen-bonded ethanol molecule in the model, mimicking the active site of the CYP121 P450, show that the resting state and azole binding structures are close in energy, which may lead to chemical equilibrium between the two structures, as indeed observed with recent protein structural studies that have demonstrated two distinct azole binding mechanisms to P450 heme.  相似文献   

12.
Density functional theory (DFT) calculations are reported for a set of model compounds intended to represent the structure of the Photosystem II (PSII) water oxidising complex (WOC) as determined by the recent 1.9 ? resolution single crystal X-ray diffraction (XRD) study of Umena et al. In contrast with several other theoretical studies addressing this structure, we find that it is not necessary to invoke photoreduction of the crystalline sample below the S(1)'resting state' in order to rationalise the observed WOC geometry. Our results are consistent with crystallised PSII in the S(1) state, with S(1) corresponding to either (Mn(III))(4) or (Mn(III))(2)(Mn(IV))(2) as required by the two competing paradigms for the WOC oxidation state pattern. Of these two paradigms, the 'low-oxidation-state' paradigm provides a better match for the crystal structure, with the comparatively long Mn(2)-Mn(3) distance in particular proving difficult to reconcile with the 'high-oxidation-state' model. Best agreement with the set of metal-metal distances is obtained with a S(1) model featuring μ-O, μ-OH bridging between Mn(3) and Mn(4) and deprotonation of one water ligand on Mn(4). Theoretical modelling of the 1.9 ? structure is an important step in assessing the validity of this recent crystal structure, with implications for our understanding of the mechanism of water oxidation by PSII.  相似文献   

13.
Transition-metal complexes containing (C-C)→M σ-interactions have potential applications in both catalysis and the activation and cleavage of C-C bonds. Fully characterising the bonding and interactions in complexes containing such (C-C)→M σ-interactions is vital to understand their chemical behaviour. As a result a high-resolution experimental X-ray charge density study has been undertaken on [Rh(Binor-S)(PCy(3))][HCB(11)Me(11)] (Binor-S = 1,2,4,5,6,8-dimetheno-s-indacene) which contains a (C-C)→Rh interaction. The data are analysed using Bader's "Atoms in Molecules" (AIM) approach with particular attention paid to the interactions around the rhodium centre. The results provide clear evidence for the σ(C-C)→Rh interaction in the solid-state which is classified as a weak covalent interaction. These results are supported by theoretical calculations.  相似文献   

14.
Several numerical integration schemes for the evaluation of matrix elements in density functional theory calculations have been studied and compared by computational practice. The best scheme was found to be the combination of the atomic partition function proposed by Becke with the scaled generalized Gauss-Laguerre quadrature formula for radial integration suggested by Yang, which achieve the highest convergence rate to the numerical integration. With the same number of integration points, the accuracy of the calculated results by this scheme is higher by 1 to 2 orders of magnitudes than that by other schemes. The reason for achieving higher accuracy by this scheme has been proposed preliminarily.  相似文献   

15.
We have explored possible mechanisms for the formation of the catalytically active Ni(a)-S state of the enzyme, nickel iron hydrogenase, from the Ni*(r) (ready) or Ni*(u) (unready) state, by reaction with H(2), using density functional theory calculations with the BP86 functional in conjunction with a DZVP basis set. We find that for the reaction of the ready state, which is taken to have an -OH bridge, the rate determining step is the cleavage of H(2) at the Ni(3+) centre with a barrier of approximately 15 kcal mol(-1). We take the unready state to have a -OOH bridge, and find that reaction with H(2) to form the Ni(r)-S state can proceed by two possible routes. One such path has a number of steps involving electron transfer, which is consistent with experiment, as is the calculated barrier of approximately 19 kcal mol(-1). The alternative pathway, with a lower barrier, may not be rate determining. Overall, our predictions give barriers in line with experiment, and allow details of the mechanism to be explored which are inaccessible from experiment.  相似文献   

16.
Five potential reaction mechanisms, each leading to the formation of an α-O-4-linked coniferyl alcohol dimer, and one scheme leading to the formation of a recently proposed free-radical coniferyl alcohol trimer were assessed using density functional theory (DFT) calculations. These potential reaction mechanisms were evaluated using both the calculated Gibbs free energies, to predict the spontaneity of the constituent reactions, and the electron-density mapped Fukui function, to determine the most reactive sites of each intermediate species. The results indicate that each reaction in one of the six mechanisms is thermodynamically favorable to those in the other mechanisms; what is more, the Fukui function for each free radical intermediate corroborates with the thermochemical results for this mechanism. This mechanism proceeds via the formation of two distinct free-radical intermediates, which then react to produce the four α-O-4 stereoisomers.  相似文献   

17.
A quantum-chemical study employing the BLYP density functional is reported for the complex of H3O+ with 18-crown-6. According to a Car-Parrinello molecular dynamics (CPMD) study at 340 K, the complex is quite flexible, and is characterized by three quasi-linear (two-center) hydrogen-bond interactions for most of the time. On a time scale of 10 ps, frequent inversions of H3O+ are observed, as well as two 120 degrees rotations switching the hydrogen bonds from one set of crown-ether O atoms to the other. These results are consistent with density-functional studies of stationary points on the potential energy surface, which show how the crown "catalyzes" the guest's inversion. Two close-lying minima are characterized, as well as two distinct transition states connecting them, either via H3O+ inversion or rotation, with barriers of 1.0 and 4.6 kcal/mol, respectively, at the BLYP/II'//BLYP/6-31G level. Orbital interactions between lone pairs on ether O atoms and hydronium sigma(OH) antibonding orbitals are important factors for the directionality of the hydrogen bonds.  相似文献   

18.
We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for the prediction of the isomer shift (IS) and the quadrupole splitting (QS) parameters of M?ssbauer spectroscopy. Two sources of geometry (density functional theory-optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the M?ssbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for the prediction of IS and noticeably more accurate results for the QS parameter. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have a mixed success whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the M?ssbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH), and compared to experimental data in the literature.  相似文献   

19.
The feasibility of using cucurbituril host molecule as a probable actinyl cation binders candidate is investigated through density functional theory based calculations. Various possible binding sites of the cucurbit[5]uril host molecule to uranyl are analyzed and based on the binding energy evaluations, μ(5)-binding is predicted to be favored. For this coordination, the structure, vibrational spectra, and binding energies are evaluated for the binding of three actinyls in hexa-valent and penta-valent oxidation states with functionalized cucurbiturils. Functionalizing cucurbituril with methyl and cyclohexyl groups increases the binding affinities of actinyls, whereas fluorination decreases the binding affinities as compared to the native host molecule. Surprisingly hydroxylation of the host molecule does not distinguish the oxidation state of the three actinyls.  相似文献   

20.
Density functional calculations were performed on the sulfoxidation reaction by a model compound I (Cpd I) of cytochrome P450. By contrast to previous alkane hydroxylation studies, which exhibit a dominant low-spin (LS) pathway, the sulfoxidation follows a dominant high-spin (HS) reaction. Thus, competing hydroxylation and sulfoxidation processes as observed for instance by Jones et al. (Volz, T. J.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2002, 124, 9724) are the result of a two-state reactivity scenario, whereby the hydroxylation originates from the LS pathway and the sulfoxidation from the HS pathway. In this manner, two spin states of a single oxidant (Cpd I) can be disguised as two different oxidants. The calculations rule out the possibility that a second oxidant (the ferric peroxide, Cpd 0 species) interferes in the observed results of Jones et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号