首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   

3.
A parametric experimental investigation of the coupling effects during steady-state two-phase flow in porous media was carried out using a large model pore network of the chamber-and-throat type, etched in glass. The wetting phase saturation,S 1, the capillary number,Ca, and the viscosity ratio,k, were changed systematically, whereas the wettability (contact angleθ e ), the coalescence factorCo, and the geometrical and topological parameters were kept constant. The fluid flow rate and the pressure drop were measured independently for each fluid. During each experiment, the pore-scale flow mechanisms were observed and videorecorded, and the mean water saturation was determined with image analysis. Conventional relative permeability, as well as generalized relative permeability coefficients (with the viscous coupling terms taken explicitly into account) were determined with a new method that is based on a B-spline functional representation combined with standard constrained optimization techniques. A simple relationship between the conventional relative permeabilities and the generalized relative permeability coefficients is established based on several experimental sets. The viscous coupling (off-diagonal) coefficients are found to be comparable in magnitude to the direct (diagonal) coefficients over board ranges of the flow parameter values. The off-diagonal coefficients (k rij /Μ j ) are found to be unequal, and this is explained by the fact that, in the class of flows under consideration, microscopic reversibility does not hold and thus the Onsager-Casimir reciprocal relation does not apply. Thecoupling indices are introduced here; they are defined so that the magnitude of each coupling index is the measure of the contribution of the coupling effects to the flow rate of the corresponding fluid. A correlation of the coupling indices with the underlying flow mechanisms and the pertinent flow parameters is established.  相似文献   

4.
Evaluation of relative permeability coefficients is one of the key steps in reliable simulation of two-phase flow in porous media. An extensive body of work exists on evaluation of these coefficients for two-phase flow under pressure gradient. Oil transport under an applied electrical gradient in porous media is also governed by the principles of two-phase flow, but is less understood. In this paper, relative permeability coefficients under applied electric field are evaluated for a specific case of two- phase fluid flow in water-wet porous media, where the second fluid phase is oil. It is postulated that the viscous drag on the oil phase, exerted by the electro-osmotic flow of the water phase, is responsible for the transport of oil in the absence of a pressure gradient. Reliable prediction of the flow patterns necessitates accurate representation and determination of the relative permeability coefficients under the electrical gradient. The contribution of each phase to the flow is represented mathematically, and the relative permeability coefficients are evaluated through electro-osmotic flow measurements conducted on oil bearing rock cores.  相似文献   

5.
Multiphase flow with a simplified model for oil entrapment   总被引:3,自引:0,他引:3  
A computationally simple procedure is described to model effects of oil entrapment on three-phase permeability-saturation-capillary pressure relations. The model requires knowledge of airwater saturation-capillary pressure relations, which are assumed to be nonhysteretic and are characterized by Van Genuchten's parametric model; scaling factors equal to the ratio of water surface tension to oil surface tension and to oil-water interfacial tension; and the maximum oil (also referred to as nonwetting liquid in a three-phase medium) saturation which would occur following water flooding of oil saturated soil. Trapped nonwetting liquid saturation is predicted as a function of present oil-water and air-oil capillary pressures and minimum historical water saturation since the occurrence of oil at a given location using an empirically-based algorithm. Oil relative permeability is predicted as a simple function of apparent water saturation (sum of actual water saturation and trapped oil saturation) and free oil saturation (difference between total oil and trapped oil saturation), and water relative permeability is treated as a unique function of actual water saturation. The proposed method was implemented in a two-dimensional finite-element simulator for three-phase flow and component transport, MOFAT. The fluid entrapment model requires minimal additional computational effort and computer storage and is numerically robust. The applicability of the model is illustrated by a number of hypothetical one- and two-dimensional simulations involving infiltration and redistribution with changes in water-table elevations. Results of the simulations indicate that the fraction of a hydrocarbon spill that becomes trapped under given boundary conditions increases as a nonlinear function of the maximum trapped nonwetting liquid saturation. Dense organic liquid plumes may exhibit more pronounced effects of entrapment due to the more dynamic nature of flow, even under static water table conditions. Disregarding nonwetting fluid entrapment may lead to significant errors in predictions of immiscible plume migration.  相似文献   

6.
In the case of coupled, two-phase flow of fluids in porous media, the governing equations show that there are four independent generalized permeability coefficients which have to be measured separately. In order to specify these four coefficients at a specific saturation, it is necessary to conduct two types of flow experiments. The two types of flow experiments used in this study are cocurrent and countercurrent, steady-state permeability experiments. It is shown that, by taking this approach, it is possible to define the four generalized permeability coefficients in terms of the conventional cocurrent and countercurrent effective permeabilities for each phase. It is demonstrated that a given generalized phase permeability falls about midway between the conventional, cocurrent effective permeability for that phase, and that for the countercurrent flow of the same phase. Moreover, it is suggested that the conventional effective permeability for a given phase can be interpreted as arising out of the effects of two types of viscous drag: that due to the flow of a given phase over the solid surfaces in the porous medium and that due to momentum transfer across the phase 1-phase 2 interfaces in the porous medium. The magnitude of the viscous coupling is significant, contributing at least 15% to the total conventional cocurrent effective permeability for both phases. Finally, it is shown that the nontraditional generalized permeabilities which arise out of viscous coupling effects cannot equal one another, even when the viscosity ratio is unity and the surface tension is zero.  相似文献   

7.
A mathematically rigorous method of homogenization is presented and used to analyze the equivalent behavior of transient flow of two incompressible fluids through heterogeneous media. Asymptotic expansions and H-convergence lead to the definition of a global or effective model of an equivalent homogeneous reservoir. Numerical computations to obtain the homogenized coefficients of the entire reservoir have been carried out via a finite element method. Numerical experiments involving the simulation of incompressible two-phase flow have been performed for each heterogeneous medium and for the homogenized medium as well as for other averaging methods. The results of the simulations are compared in terms of the transient saturation contours, production curves, and pressure distributions. Results obtained from the simulations with the homogenization method presented show good agreement with the heterogeneous simulations.  相似文献   

8.
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.  相似文献   

9.
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir, is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.  相似文献   

10.
We report preliminary results from simulations of single-phase and two-phase flow through three-dimensional tomographic reconstructions of Fontainebleau sandstone. The simulations are performed with the lattice-Boltzmann method, a variant of lattice-gas cellular-automation models of fluid mechanics. Simulations of single-phase flow on a sample of linear size 0.2 cm yield a calculated permeability in the range 1.0–1.5 darcys, depending on direction, which compares qualitatively well with a laboratory measurement of 1.3 darcys on a sample approximately an order of magnitude larger. The sensitivity of permeability calculations to sample size, grid resolution, and choice of model parameters is quantified empirically. We also present a qualitative study of immiscible two-phase flow in a sample of linear size 0.05 cm; simulations of both drainage and imbibition are presented.  相似文献   

11.
Deep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.  相似文献   

12.
Adiabatic and diabatic two-phase venting flow in a microchannel   总被引:1,自引:0,他引:1  
The growth and advection of the vapor phase in two-phase microchannel heat exchangers increase the system pressure and cause flow instabilities. One solution is to locally vent the vapor formed by capping the microchannels with a porous, hydrophobic membrane. In this paper we visualize this venting process in a single 124 μm by 98 μm copper microchannel with a 65 μm thick, 220 nm pore diameter hydrophobic Teflon membrane wall to determine the impact of varying flow conditions on the flow structures and venting process during adiabatic and diabatic operation. We characterize liquid velocities of 0.14, 0.36 and 0.65 m/s with superficial air velocities varying from 0.3 to 8 m/s. Wavy-stratified and stratified flow dominated low liquid velocities while annular type flows dominated at the higher velocities. Gas/vapor venting can be improved by increasing the venting area, increasing the trans-membrane pressure or using thinner, high permeability membranes. Diabatic experiments with mass flux velocities of 140 and 340 kg/s/m2 and exit qualities up to 20% found that stratified type flows dominate at lower mass fluxes while churn-annular flow became more prevalent at the higher mass-flux and quality. The diabatic flow regimes are believed to significantly influence the pressure-drop and heat transfer coefficient in vapor venting heat exchangers.  相似文献   

13.
We develop a mathematical model for hysteretic two-phase flow (of oil and water) in waterwet porous media. To account for relative permeability hysteresis, an irreversible trapping-coalescence process is described. According to this process, oil ganglia are created (during imbibition) and released (during drainage) at different rates, leading to history-dependent saturations of trapped and connected oil. As a result, the relative permeability to oil, modelled as a unique function of the connected oil saturation, is subject to saturation history. A saturation history is reflected by history parameters, that is by both the saturation state (of connected and trapped oil) at the most recent flow reversal and the most recent water saturation at which the flow was a primary drainage. Disregarding capillary diffusion, the flow is described by a hyperbolic equation with the connected oil saturation as unknown. This equation contains functional relationships which depend on the flow mode (drainage or imbibition) and the history parameters. The solution consists of continuous waves (expansion waves and constant states), shock waves (possibly connecting different modes) and stationary discontinuities (connecting different saturation histories). The entropy condition for travelling waves is generalized to include admissible shock waves which coincide with flow reversals. It turns out that saturation history generally has a strong influence on both the type and the speed of the waves from which the solution is constructed.  相似文献   

14.
An ensemble-based technique has been developed and successfully applied to simultaneously estimate the relative permeability and capillary pressure by history matching the observed production profile. Relative permeability and capillary pressure curves are represented by using a power-law model. Then, forward simulation is performed with the initial coefficients of the power-law model, all of which are to be tuned automatically and finally determined once the observed data is assimilated completely and history matched. The newly developed technique has been validated by a synthetic coreflooding experiment with two scenarios. The endpoints are fixed for the first scenario, whereas they are completely free in the second scenario. Simultaneous estimation of relative permeability and capillary pressure has been found to improve gradually as more observation data is assimilated. There exists an excellent agreement between both the updated relative permeability and capillary pressure and their corresponding reference values, once the discrepancy between the simulated and observed production history has been minimized. Compared with coefficients of capillary pressure curve, coefficients of relative permeability curves, irreducible water saturation and residual oil saturation are found to be more sensitive to the observed data. In addition, water relative permeability is more sensitive to the observation data than either oil relative permeability or capillary pressure. It is shown from its application to a laboratory coreflooding experiment that relative permeability and capillary pressure curves can be simultaneously evaluated once all of the experimental measurements are assimilated and history matched.  相似文献   

15.
通过气液两相螺旋流实验仪器,研究具有可降解性的天然椰子油新型添加剂对于气液两相螺旋流流型影响以及流型的转变规律,并与表面活性剂十二烷基苯磺酸钠(SDBS)进行对比研究。实验工况设定为:实验介质为空气和水,含气率10%~90%,气相折算速度0.01~4.0m/s,液相折算速度0.01~4.0m/s,表面活性剂采用从植物提取的可降解性椰子油和SDBS,起旋装置为叶轮。实验观察到天然椰子油对于螺旋轴状流、螺旋团状流、螺旋弥散流转换特性的影响与SDBS的效果相类似,该三种流型发生条件相比于以往都有所提前,且存在范围被拓宽。浓度为500ppm时椰子油体系下的主要流型为螺旋弥散流,而SDBS体系下则以螺旋团状流为主。  相似文献   

16.
IntroductionItisasuccessfulexampleinadevelopmentstoryofscienceandtechnologyformechanicsoffluidsinporousmediatocombinewithengineeringtechnology .Fieldsinfluencedbythemechanicsinvolveddevelopmentofoil_gasandgroundwaterresources,controlonseawaterintrusionandsubsidenceandgeologichazards,geotechnicalengineeringandbioengineering ,andairlineindustry[1~ 7].Aproblemonnonlinearflowinlow_permeabilityporousmediaisbutonlyabasiconeindifferentkindsofengineeringfields,butalsooneoffrontlineresearchfieldsofmod…  相似文献   

17.
The balance of viscous, capillary and gravity forces strongly affects two-phase flow through porous media and can therefore influence the choice of appropriate methods for numerical simulation and upscaling. A strict separation of the effects of these various forces is not possible due to the nature of the nonlinear coupling between the various terms in the transport equations. However, approximate prediction of this force balance is often made by calculation of dimensionless quantities such as capillary and gravity numbers. We present an improved method for the numerical analysis of simulations which recognises the changing balance of forces – in both space and time – in a given domain. The classical two-phase transport equations for immiscible incompressible flow are expressed in two forms: (i) the convection–diffusion-gravity (CDG) formulation where convection and diffusion represent viscous and capillary effects, respectively, (ii) the oil pressure formulation where the viscous effects are attributed to the product of mobility difference and the oil pressure gradient. Each formulation provides a different perspective on the balance of forces although the two forms are equivalent. By discretising the different formulations, the effect of each force on the rate of change of water saturation can be calculated for each cell, and this can be analysed visually using a ternary force diagram. The methods have been applied to several simple models, and the results are presented here. When model parameters are varied to determine sensitivity of the estimators for the balance of forces, the CDG formulation agrees qualitatively with what is expected from physical intuition. However, the oil pressure formulation is dominated by the steady-state solution and cannot be used accurately. In addition to providing a physical method of visualising the relative magnitudes of the viscous, gravity and capillary forces, the local force balance may be used to guide our choice of upscaling method.  相似文献   

18.
The homogenization method is used to analyze the equivalent behavior of a compressible three-phase flow model in heterogeneous porous media with periodic microstructure, including capillary effects. Asymptotic expansions lead to the definition of a global or effective model of an equivalent homogeneous reservoir. The resulting equations are of the same type as the points equations, with effective coefficients. The method allows the determination of these effective coefficients from a knowledge of the geometrical structure of the basic cell and its heterogeneities. Numerical computations to obtain the homogenized coefficients of the entire reservoir have been carried out via a finite element method.  相似文献   

19.
An idealized model of a porous rock consisting of a bundle of capillary tubes whose cross-sections are regular polygons is used to assess the importance of viscous coupling or lubrication during simultaneous oil-water flow. Fluids are nonuniformly distributed over tubes of different characteristic dimension because of the requirements of capillary equilibrium and the effect of interfacial viscosity at oil-water interfaces is considered. With these assumptions, we find that the importance of viscous coupling depends on the rheology of the oil-water interface. Where the interfacial shear viscosity is zero, viscous coupling leading to a dependence of oil relative permeability on oil-water viscosity ratio for viscosity ratios greater than one is important for a range of pore cross-section shapes and pore size distributions. For nonzero interfacial shear viscosity, viscous coupling is reduced. Using values reported in the literature for crude oil-brine systems, we find no viscous coupling.  相似文献   

20.
A separated flow model has been developed that is applicable to vertical annular two-phase flow in the purely convective heat transfer regime. Conservation of mass, momentum, and energy are used to solve for the liquid film thickness, pressure drop, and heat transfer coefficient. Closure relationships are specified for the interfacial friction factor, liquid film eddy-viscosity, turbulent Prandtl number, and entrainment rate. Although separated flow models have been reported previously, their use has been limited, because they were tested over a limited range of flow and thermal conditions. The unique feature of this model is that it has been tested and calibrated against a vast array of two-phase pressure drop and heat transfer data, which include upflow, downflow, and microgravity flow conditions. The agreements between the measured and predicted pressure drops and heat transfer coefficients are, on average, better or comparable to the most reliable empirical correlations. This separated flow model is demonstrated to be a reliable and practical predictive tool for computing two-phase pressure drop and heat transfer rates. All of the datasets have been obtained from the open literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号