首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To any field \Bbb K \Bbb K of characteristic zero, we associate a set (\mathbbK) (\mathbb{K}) and a group G0(\Bbb K) {\cal G}_0(\Bbb K) . Elements of (\mathbbK) (\mathbb{K}) are equivalence classes of families of Lie polynomials subject to associativity relations. Elements of G0(\Bbb K) {\cal G}_0(\Bbb K) are universal automorphisms of the adjoint representations of Lie bialgebras over \Bbb K \Bbb K . We construct a bijection between (\mathbbKG0(\Bbb K) (\mathbb{K})\times{\cal G}_0(\Bbb K) and the set of quantization functors of Lie bialgebras over \Bbb K \Bbb K . This construction involves the following steps.? 1) To each element v \varpi of (\mathbbK) (\mathbb{K}) , we associate a functor \frak a?\operatornameShv(\frak a) \frak a\mapsto\operatorname{Sh}^\varpi(\frak a) from the category of Lie algebras to that of Hopf algebras; \operatornameShv(\frak a) \operatorname{Sh}^\varpi(\frak a) contains U\frak a U\frak a .? 2) When \frak a \frak a and \frak b \frak b are Lie algebras, and r\frak a\frak b ? \frak a?\frak b r_{\frak a\frak b} \in\frak a\otimes\frak b , we construct an element ?v (r\frak a\frak b) {\cal R}^{\varpi} (r_{\frak a\frak b}) of \operatornameShv(\frak a)?\operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak a)\otimes\operatorname{Sh}^\varpi(\frak b) satisfying quasitriangularity identities; in particular, ?v(r\frak a\frak b) {\cal R}^\varpi(r_{\frak a\frak b}) defines a Hopf algebra morphism from \operatornameShv(\frak a)* \operatorname{Sh}^\varpi(\frak a)^* to \operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak b) .? 3) When \frak a = \frak b \frak a = \frak b and r\frak a ? \frak a?\frak a r_\frak a\in\frak a\otimes\frak a is a solution of CYBE, we construct a series rv(r\frak a) \rho^\varpi(r_\frak a) such that ?v(rv(r\frak a)) {\cal R}^\varpi(\rho^\varpi(r_\frak a)) is a solution of QYBE. The expression of rv(r\frak a) \rho^\varpi(r_\frak a) in terms of r\frak a r_\frak a involves Lie polynomials, and we show that this expression is unique at a universal level. This step relies on vanishing statements for cohomologies arising from universal algebras for the solutions of CYBE.? 4) We define the quantization of a Lie bialgebra \frak g \frak g as the image of the morphism defined by ?v(rv(r)) {\cal R}^\varpi(\rho^\varpi(r)) , where r ? \mathfrakg ?\mathfrakg* r \in \mathfrak{g} \otimes \mathfrak{g}^* .<\P>  相似文献   

2.
We introduce two remarkable identities written in terms of single commutators and anticommutators for any three elements of an arbitrary associative algebra. One is a consequence of the other (fundamental identity). From the fundamental identity, we derive a set of four identities (one of which is the Jacobi identity) represented in terms of double commutators and anticommutators. We establish that two of the four identities are independent and show that if the fundamental identity holds for an algebra, then the multiplication operation in that algebra is associative. We find a generalization of the obtained results to the super case and give a generalization of the fundamental identity in the case of arbitrary elements. For nondegenerate even symplectic (super)manifolds, we discuss analogues of the fundamental identity.  相似文献   

3.
In this paper we show how to construct an isomorphism between an alternative algebra over a field of characteristic and its isotope , where is an element of Zhevlakov's radical of . This leads to the equivalence of any polynomial identity in alternative algebras and the isotope identity .

  相似文献   


4.
5.
6.
7.
We study the shape identities arising in the theory of Bernstein algebras. We determine all shape identities of minimal degree for two subclasses of Bernstein algebras, namely, normal Bernstein algebras and exceptional Bernstein algebras.  相似文献   

8.
9.
10.
11.
Recently Okada defined algebraically ninth variation skew Q-functions, in parallel to Macdonald’s ninth variation skew Schur functions. Here we introduce a skew shifted tableaux definition of these ninth variation skew Q-functions, and prove by means of a non-intersecting lattice path model a Pfaffian outside decomposition result in the form of a ninth variation version of Hamel’s Pfaffian outside decomposition identity. As corollaries to this we derive Pfaffian identities generalising those of Józefiak–Pragacz, Nimmo, and most recently Okada. As a preamble to this we present a parallel development based on (unshifted) semistandard tableaux that leads to a ninth variation version of the outside decomposition determinantal identity of Hamel and Goulden. In this case the corollaries we offer include determinantal identities generalising the Schur and skew Schur function identities of Jacobi–Trudi, Giambelli, Lascoux–Pragacz, Stembridge, and Okada.  相似文献   

12.
We use symmetric identities to study centres of reduced enveloping algebras of restricted Lie algebras. We formulate a criterion for a reduced centre to map injectively into a reduced enveloping algebra.  相似文献   

13.
14.
15.
Let Kbe a field of characteristic p> 0. Denote by ω(R) the augmentation ideal of either a group algebra (R) = K[G] or a restricted enveloping algebra R= u(L) over K. We first characterize those Rfor which ω(R) satisfies a polynomial identity not satisfied by the algebra of all 2 × 2 matrices over K. Then, we examine those Rfor which U J(R) satisfies a semigroup identity (that is, a polynomial identity which can be written as the difference of two monomials).  相似文献   

16.
17.
Let L be a restricted Lie algebra. The symmetric algebra Sp(L) of the restricted enveloping algebra u(L) has the structure of a Poisson algebra. We give necessary and sufficient conditions on L in order for the symmetric algebra Sp(L) to satisfy a multilinear Poisson identity. We also settle the same problem for the symmetric algebra S(L) of a Lie algebra L over an arbitrary field. The first author was partially supported by MIUR of Italy. The second author was partially supported by Grant RFBR-04-01- 00739. Received: 31 October 2005  相似文献   

18.
19.
In the paper, the varieties of Poisson algebras whose ideals of identities contain the identity {x, y}· {z, t} = 0 are studied, and the correlation of these varieties with varieties of Lie algebras is investigated. A variety of Poisson algebras of almost exponential growth is presented. An example of a variety of Poisson algebras with fractional exponent is also given.  相似文献   

20.
M. Kochetov 《代数通讯》2013,41(3):1211-1221
The notion of a polynomial identity for algebras is well-known. In this work the notion of identity is transferred to coalgebras (where one may call it a coidentity). The author studies the basic properties of coidenti-ties, some examples of Hopf algebras with an identity or a coidentity are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号