首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李世亮  戴鹏程 《物理》2011,40(6):353-359
在常规超导体中,库珀对是由于电子与声子之间的相互作用而形成的.在此过程中,人们可以只考虑电子的电荷性质与声子之间的关联.然而在所谓的非常规超导体中,人们意识到一些其他类型的元激发也可能导致超导现象,而自旋涨落则可能是其中最重要的一种.在大多数非常规超导体中,都可以发现自旋涨落的身影.而在一些重要的体系中,包括铜基超导体、铁基超导体以及一些重费米子超导体体系等,可以确切地说,自旋涨落起到了关键的作用,尽管其相对应的超导机制仍然还不清楚.文章简单介绍了自旋涨落与超导电性之间的关联.  相似文献   

2.
In this article, we review the recent theoretical works on the spin fluctuations and superconductivity in iron-based superconductors. Using the fluctuation exchange approximation and multi-orbital tight-binding models, we study the char- acteristics of the spin fluctuations and the symmetries of the superconducting gaps for different iron-based superconductors. We explore the systems with both electron-like and hole-like Fermi surfaces (FS) and the systems with only the electron-like FS. We argue that the spin-fluctuation theories are successful in explaining at least the essential part of the problems, indicating that the spin fluctuation is the common origin of superconductivity in iron-based superconductors.  相似文献   

3.
龚冬良  罗会仟 《物理学报》2018,67(20):207407-207407
类似于其他非常规超导材料,铁基高温超导电性通常出现在静态长程反铁磁序被抑制之后,并且强烈的自旋涨落始终与超导电性相伴相生,因此理解磁性相互作用是建立铁基超导微观机理的重要前提.中子散射作为研究凝聚态物质中磁性相互作用的有力工具,在揭示铁基超导电性的磁性起源方面起到了关键作用.本文系统总结了近十年来铁基超导材料的中子散射研究结果,包括铁基超导材料中的静态磁结构、磁性相变、动态磁激发、电子向列相等,并探讨它们与超导电性之间的关系.  相似文献   

4.
杨义峰  李宇 《物理学报》2015,64(21):217401-217401
与其他非常规超导系列相比, 重费米子超导体往往具有丰富多样的竞争序, 超导与各种竞争序相伴而生, 电子配对与反铁磁涨落、铁磁涨落、价态涨落、电四极矩涨落等量子临界涨落密切相关, 扩充了非常规超导的研究内容. 重费米子材料中的f电子往往同时参与超导与各种竞争序的形成, 表现出局域与巡游的二重性. 重费米子二流体理论为理解重费米子超导与竞争序的关系提供了新的思路.  相似文献   

5.
铜氧化物高温超导、铁基高温超导、重费米子超导和κ-型层状有机超导等超导体的超导态都与磁性有序态相邻,且超导能隙在动量空间一般存在变号.因此,这些超导体的超导机理被认为有别于常规BCS超导中的电子交换声子导致的各向同性s-波配对.在这些非常规超导中,自旋涨落被认为是导致电子形成库珀对的主要起源之一.本文主要以铜基和铁基高...  相似文献   

6.
In the framework of the weak coupling theory of superconductivity, we have proved that spin and charge fluctuations in the high-Tc superconductors can pro-duce respectively, pair-breaking and pair-forming effects on the superconductivity resulting from the "generalized BCS mechanism". With the coupling constant for spin fluctuations larger than that for charge fluctuations, they combine to produce a temperature-dependent effective pair-breaking effect, which makes Tc decrease more rapidly than Δ(0), the superconducting gap at T=0, and therefore, enhances the ratio 2Δ(0)/Tc. This provides a reasonable physical interpretation for the relevant experimental results.  相似文献   

7.
We reconsider the long-standing problem of the effect of spin fluctuations on the critical temperature and isotope effect in a phonon-mediated superconductor. Although the general physics of the interplay between phonons and paramagnons has been rather well understood, the existing approximate formulas fail to describe the correct behavior of Tc for general phonon and paramagnon spectra. Using a controllable approximation, we derive an analytical formula for Tc which agrees well with exact numerical solutions of the Eliashberg equations for a broad range of parameters. Based on both numerical and analytical results, we predict a strong enhancement of the isotope effect when the frequencies of spin fluctuation and phonons are of the same order. This effect may have important consequences for near-magnetic superconductors such as MgCNi3.  相似文献   

8.
Theory of spin fluctuations for itinerant magnetism and its application to high temperature superconductivity are reviewed. After a brief introduction to the whole subject the developments of the self-consistent renormalization theory of spin fluctuations are summarized with particular emphasis on critical properties at the quantum phase transitions. Most of the anomalous properties in the normal state of high-Tc cuprates are understood as due to the critical behaviours for the two dimensional antiferromagnetic metals. By analysing the nuclear magnetic relaxation rate and the T-linear term of resistivity, the set of parameters to specify the spin fluctuations are determined. It is shown that by using the parameters thus obtained one can describe other quantities as well, e.g. optical conductivity. Then we proceed to the theory of superconductivity by the spin fluctuation mechanism. After some discussion on the weak coupling treatments, the strong coupling theory is reviewed. It is shown that the set of parameters determined by the normal state properties of the high-T c cuprates just give a transition temperature of the right order of magnitude. Among the parameters, the most sensitive one for T c is the frequency spread of the spin fluctuations. This fact enables us to present a possible unified picture of the antiferromagnetic spin fluctuation-induced superconductors, including heavy fermion superconductors and organic superconductors. This point of view may be confirmed to a certain extent by microscopic calculations based on the fluctuation exchange approximation for the two-dimensional Hubbard models representing not only the cuprates but also organic and trellis lattice compounds. The review is concluded with some discussions on future problems, e.g. the pseudo spin-gap in the under-doped region.  相似文献   

9.
Theory of spin fluctuations as developed in the past 30 years have played important roles in the theory of magnetism in metals, particularly in elucidating the properties around the magnetic instability or quantum critical points. Recently the theory has been extended to deal with the spin fluctuaion-mediated superconductivity with anisotropic order parameters in strongly correlated electron systems. These theoretical developments are briefly reviewed and the high temperature superconductivity of cuprates and organic and heavy electron superconductors are discussed in the light of these theories.  相似文献   

10.
《Infrared physics》1992,33(6):459-462
Epitaxial films of YBCO superconductors whose C axes are primarily perpendicular to the film surface, were prepared. The samples, which were treated by means of a gettered annealing technique, were investigated by the X-ray diffraction pattern method (XRD) and infrared (IR) reflectance spectra in the 140–800 cm−1 spectral range. The strengths of the phonon structures are influenced greatly by the superconductivity of the sample, which can be determined by the annealing conditions. The relation between the resulting IR activity of phonons and the superconductivity is clear and the important role of phonons in superconductivity is demonstrated.  相似文献   

11.
In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand the high temperature superconductivity. As an illustration, we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space. The typical spin and charge orderings are shown by choosing appropriate parameters, which are in good agreement with experiments. We also show the effect of Fe vacancies, which can introduce the nematic phase and interesting magnetic ground states. The orbital ordering is also discussed in iron-based superconductors. It is found that disorder may play a role to produce the superconductivity.  相似文献   

12.
在本文中,以电声子机制超导电性理论为基础,用电负性均衡原理研究了由于超导材料的各向异性引起的电子态密度分布的不均匀性,晶格稳定性的差异性及超导材料中元素成键特征对超导转变温度影响的特征,提出了在各向异性的超导材料中电声子机制可以产生高的超导转变温度Tc.  相似文献   

13.
In recent work we formulated a new set of electrodynamic equations for superconductors as an alternative to the conventional London equations, compatible with the prediction of the theory of hole superconductivity that superconductors expel negative charge from the interior towards the surface. Charge expulsion results in a macroscopically inhomogeneous charge distribution and an electric field in the interior, and because of this a spin current is expected to exist. Furthermore, we have recently shown that a dynamical explanation of the Meissner effect in superconductors leads to the prediction that a spontaneous spin current exists near the surface of superconductors (spin Meissner effect). In this paper we extend the electrodynamic equations proposed earlier for the charge density and charge current to describe also the space and time dependence of the spin density and spin current. This allows us to determine the magnitude of the expelled negative charge and interior electric field as well as of the spin current in terms of other measurable properties of superconductors. We also provide a `geometric' interpretation of the difference between type I and type II superconductors, discuss how superconductors manage to conserve angular momentum, discuss the relationship between our model and Slater's seminal work on superconductivity, and discuss the magnitude of the expected novel effects for elemental and other superconductors.  相似文献   

14.
宋艳鹏  陈洪祥  郭建刚  陈小龙 《物理学报》2018,67(12):127101-127101
在强关联电子体系中,轨道、自旋和晶格等自由度之间的相互作用一直是研究的热点.这些自由度之间的竞争和共存产生了复杂新奇的物理现象,如超导现象、量子相变、自旋有序、拓扑相变、金属绝缘转变等,这些丰富的物理现象来源于不同的有序态或量子涨落之间的竞争和耦合.自旋轨道耦合作用是指粒子的自旋角动量和轨道角动量之间的相互作用,在4d/5d基化合物中,由于电子的运动速度较快,自旋轨道耦合的效应不可忽视,可能表现出与3d基化合物不同的物性.例如,在含4d/5d过渡族金属元素的超导体中,其电子配对的机制可能不同于常规的s波Bardeen-Cooper-Schrieffer超导体.本文以几种典型的4d/5d基超导体为例,对其晶体结构和超导物性及其内在联系进行了详细论述,重点探讨了阴离子共价键强弱对晶体结构、相变和超导物性的影响,希望引起相关研究者对该类超导体的重视.  相似文献   

15.
Quite a number of metals and alloys can be forced into the amorphous state by quenching. In particular, condensation onto a substrate cooled to He-temperature is very effective. The superconductivity and related properties of these metals are considered in this article. The influence of the amorphous structure on the electron and the phonon system is discussed. In simple metals the electrons show a free electron behaviour. The transverse phonons are softened but maintainn the ω3-density of states at low frequencies. The electron-phonon interaction does not conserve momentum due to the loss of translational invariance in the amorphous metal and yields a large contribution to α2F(ω) at low frequencies. Therefore the amorphous superconductors are strong coupling. The strong coupling character alters the temperature dependence of several superconducting parameters such as critical fields etc. The characteristic superconducting properties and superconducting fluctuations are discussed.  相似文献   

16.
本文介绍了铁基超导体发展的重要进展,对铁基超导体的结构进行了分类与总结,通过最新的实验数据对铁基超导体中结构相变和自旋密度波与超导电性之间的关系进行了系统的分析与总结,并结合我们的实验结果与镍基超导体进行了对比,最后对铁基超导体的发展做一些展望.  相似文献   

17.
‘Conventional’ superconductivity, as used in this review, refers to electron–phonon-coupled superconducting electron pairs described by BCS theory. Unconventional superconductivity refers to superconductors where the Cooper pairs are not bound together by phonon exchange but instead by exchange of some other kind, e.g. spin fluctuations in a superconductor with magnetic order either coexistent or nearby in the phase diagram. Such unconventional superconductivity has been known experimentally since heavy fermion CeCu2Si2, with its strongly correlated 4f electrons, was discovered to superconduct below 0.6?K in 1979. Since the discovery of unconventional superconductivity in the layered cuprates in 1986, the study of these materials saw Tc jump to 164?K by 1994. Further progress in high-temperature superconductivity would be aided by understanding the cause of such unconventional pairing. This review compares the fundamental properties of 9 unconventional superconducting classes of materials – from 4f-electron heavy fermions to organic superconductors to classes where only three known members exist to the cuprates with over 200 examples – with the hope that common features will emerge to help theory explain (and predict!) these phenomena. In addition, three new emerging classes of superconductors (topological, interfacial – e.g. FeSe on SrTiO3, and H2S under high pressure) are briefly covered, even though their ‘conventionality’ is not yet fully determined.  相似文献   

18.
We report a (29)Si NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi(3) without inversion symmetry. In the SC state at P = 2.7-2.8 GPa, the temperature (T) dependence of the nuclear-spin lattice relaxation rate 1/T(1) below T(c) exhibits a T(3) behavior without any coherence peak just below T(c), revealing the presence of line nodes in the SC gap. In the normal state, 1/T(1) follows a square root T-like behavior, suggesting that the SC emerges under the non-Fermi-liquid state dominated by AFM spin fluctuations enhanced around a quantum critical point. The reason why the maximum T(c) in CeIrSi(3) is relatively high among the Ce-based heavy-fermion superconductors may be the existence of the strong AFM spin fluctuations. We discuss the comparison with the other Ce-based heavy-fermion superconductors.  相似文献   

19.
In spite of a lack of superconductivity in bulk crystalline Bi, thin film Bi deposited on thin Ni underlayers are strong-coupled superconductors below approximately 4 K. We unambiguously demonstrate that by tuning the Ni thickness the competition between ferromagnetism and superconductivity in the Ni/Bi can be tailored. For a narrow range of Ni thicknesses, the coexistence of both a superconducting energy gap and conduction electron spin polarization are visible within the Ni side of the Ni/Bi bilayers, independent of any particular theoretical model. We believe that this represents one of the clearest observations of superconductivity and ferromagnetism coexisting.  相似文献   

20.
We investigate the magnetic field dependence on Tc in the high transition temperature superconductors. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more suggested by us [Phys. Rev. B 61 (2001) 4289]. We know magnetic field dependence on our transition temperature is in good correspondence with experimental data. It is elucidated that the external field is closely related to the local internal field in order to influence spin fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号