首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characterization of heat-treated CN films fabricated by dual-facing-target sputtering for soft X-ray multilayer mirrors was performed by means of X-ray diffraction (XRD), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS). The XRD analyses indicate a graphization process in the CN films during thermal annealing. The Raman analyses imply that the primary bonding in the CN films is sp2. In other words, the formation of the sp3 bonding in the CN films can be suppressed effectively by doping with N atoms, and thus the thickness expansion resulting from the changes in the density of CN films during annealing can be decreased considerably. This result is also clarified by the increased conductivity measured. The XPS results give the information of the existence of the strong covalent bonding between N and C atoms, which can slow down the tendency of the structural relaxation during annealing. These results suggest that CN films suitable for soft X-ray multilayers used at high-temperature environments can be obtained by reactive dual-facing-target sputtering. With the low-angle X-ray diffraction measurements, we do observe the enhanced thermal stability of CoN/CN multilayers. Received: 2 October 1998 / Accepted: 21 April 1999 / Published online: 23 September 1999  相似文献   

2.
Many studies have been done on low energy (1–200 keV) and high dose (1016–1017) implantation of Mn in GaAs. This study is an attempt to incorporate Mn ions in GaAs through implantation of 1 MeV Mn+1 ions in semi-insulating GaAs substrates at doses of 3×1015/cm2 and subsequent annealing. This was done to find out if any alloy of Mn–Ga–As, or binary compounds of Mn–Ga or Mn–As form due to annealing of Mn+1 ions implanted in GaAs substrates. High Resolution XRD (HRXRD) performed before annealing shows a possibility of Ga–Mn–As alloy formation, and after annealing at 800°C, except for GaAs main peaks no other phase peaks were detected. Scanning electron microscopy (SEM) shows nanostructures of various dimensions which are thought to be formed due to the defects generated due to implantation. Fourier Transform Infrared (FTIR) study shows the shift in bandgap due to Mn doping. Raman spectroscopy shows the red shift in LO and TO peak positions of GaAs after annealing, which indicates the presence of disorder and damage due to implantation. Resistivity measurement shows a thermally activated semiconductor character of charge conduction with an activation energy of 51 meV and this activation may have occurred through the transitions from impurity band to valence band. Large positive (∼25%) magnetoresistance and a mixture of ferromagnetic and paramagnetic behavior obtained in the magnetization measurement indicate the presence of ferromagnetic MnAs nanoclusters embedded in paramagnetic GaAs:Mn matrix.  相似文献   

3.
Sequential ion implantation (copper and nickel) in silica and soda-lime glasses has been performed. The formation of copper-nickel alloy nanocluster in the glass host has been evidenced by synchrotron radiation-based techniques, namely X-ray diffraction and absorption spectroscopy. The nanocrystals' lattice parameter value was estimated, indicating the formation of Cu55Ni45 alloy particles. Optical absorption spectra are also discussed. Received 6 May 1999 and Received in final form 22 September 1999  相似文献   

4.
This paper deals with the implantation of high-energy (1.0–3.0 MeV) atomic and molecular Al+ ions in Si(100) to a fluence of 5×1014 Al atoms/cm2 at room temperature. The molecular effect, i.e. the increase of the displacement yield compared with the sum of the atomic yields, and the damage formation as well as defect behaviour after annealing have been investigated. A detailed experimental study has been made of the evolution of extended secondary defects which form during thermal anneals of Al+ or Al2 + irradiated silicon. The samples have been examined using combined Rutherford backscattering and channeling experiments together with transmission electron microscopy observations. The surface structure of the implanted wafers has been measured by atomic force microscopy. The results for the implantation-induced roughness at the Si surface, resulting from Al+ or Al2 + irradiation at the same energy/atom, total atomic fluence, flux rate, and irradiation temperature, are presented and discussed. Received: 19 August 1999 / Accepted: 20 October 1999 / Published online: 23 February 2000  相似文献   

5.
Secondary ion mass spectrometry (SIMS) has been used with differential resistivity and Hall effect measurements to study the 900°C diffusion of implanted Be in GaAs. Some outdiffusion of Be into the Si3N4 encapsulant occurs for surface Be concentrations above 1 × 1018cm?3. However, excellent agreement between the electrical and atomic profiles indicates that 85–100% of the Be remaining after annealing is electrically active. The concentration-dependent diffusion observed for implanted Be in GaAs was not significantly altered in experiments using hot substrate implants, two-step anneals, or annealing with Ga and As overpressure.  相似文献   

6.
Structure of metal clusters and of the C60 matrix in Au/C60 and Cu/C60 nanosystems was investigated by X-ray diffraction. Results support a charge-transfer-type interaction at the metal-C60 interface, which affects the size distribution of metal clusters, favouring interstitial location of metal ions in the fullerite lattice. Received 5 February 1999 and Received in final form 7 July 1999  相似文献   

7.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

8.
Cadmium sulphide nanocrystals were grown at room temperature (20 °C) under arachidic acid monolayers floating over an aqueous solution of CdCl2 inside an enclosed Langmuir-Blodgett set-up, through slow infusion of H2S gas. X-ray diffraction spectra suggest an oriented growth of the crystallites. The particle sizes were found to increase with duration of exposure to the H2S gas. Atomic force microscopy indicated that the particles were nearly circular pellets with uniform morphology throughout. In Raman spectra, the FWHM of the LO phonon was found to be large (≈20 cm-1) for all the films grown with different exposure times in H2S gas, and was found to reduce to 8 cm-1 after annealing a typical sample at 500 °C for 45 min. Received: 30 September 1998 / Accepted: 29 March 1999 / Published online: 11 August 1999  相似文献   

9.
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450?850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 ? 1017 cm?3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is V Ga V As-2CuGa.  相似文献   

10.
Co-atoms have been implanted into n-type GaAs single crystals up to a dose of 2×1015 atoms/cm2. Mössbauer Spectroscopy was used together with Proton Induced X-ray Excitation and Rutherford Backscattering Spectrometry in Channeling geometry to study the recovery of the GaAs-crystal from the implantation damage and the final lattice locations of the Co-atoms. Epitaxial regrowth of the GaAs was found to take place in the annealing temperature region from 300°–450°C. At 900°C rapid thermal annealing an epitaxial Co-phase was found at the surface with the Co-atoms partially blocking the GaAs <110> channel.  相似文献   

11.
PtCo nanoparticles with homogeneous size (around 3–4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol–dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.  相似文献   

12.
Abrupt changes in the near-band-edge luminescence of n-type undoped GaAs after implantation with 400 keV Zn ions and vacuum annealing at 580°C are reported. The good agreement of the spectral position, half-width and temperature dependence of the emission obtained after implantation and annealing with that of melt-doped GaAs: Zn indicates that implanted Zn ions have been incorporated at Ga lattice sites. The larger number of Zn substitutions obtained when bombardment is made on the Ga face than for an equivalent fluence on the As face demonstrates the existence of a polar implant effect.  相似文献   

13.
Nanoparticles of ZnFe2O4 have been prepared by using sol-gel method in two different mediums (acidic and basic) in order to observe the influence of the medium on the magnetic properties of the obtained nanoparticles. X-ray diffraction and Mössbauer studies of these samples show the presence of single-phase spinel structure. The average size of the particles as determined by X-ray diffraction increases with the annealing temperature from 18 to 52 nm. With the increase in particle size, magnetization decreases while the magnetization blocking temperature increases. Magnetization studies show that the samples prepared in basic medium have more ferrimagnetic nature as compared to those prepared in acidic medium. We understand this increase in magnetization as reflective of the increased degree of inversion (transfer of Fe3+ ions from octahedral to tetrahedral sites) in the particles of smaller size unit cells. From lattice parameter calculations on different particles it is determined that inversion is more favorable in the particles prepared in a basic medium than in the acidic medium due to the smaller cell size in the former.  相似文献   

14.
To compare the annealing effects on GaMnAs-doped with Zn (GaMnAs:Zn) and undoped GaMnAs (u-GaMnAs) epilayers, we grew GaMnAs thin films at 200 °C by molecular beam epitaxy (MBE) on GaAs substrates, and they were annealed at temperatures ranging from 220 °C to 380 °C for 100 min in air. These epilayers were characterized by high-resolution X-ray diffraction (XRD), electrical, and magnetic measurements. A maximum resistivity at temperatures Tm close to the Curie temperatures Tc was observed from the measurement of the temperature-dependent resistivity ρ(T) for both the GaMnAs:Zn and the u-GaMnAs samples. We found, however, that the maximum temperature Tm observed for GaMnAs:Zn epilayers increased with increasing annealing temperature, which was different from the result with the u-GaMnAs epilayers. The formation of GaAs:Zn and MnAs or Mn-Zn-As complexes with increasing annealing temperature is most likely responsible for the differences in appearance.  相似文献   

15.
Ion synthesis and laser annealing of Cu nanoparticles in Al2O3   总被引:1,自引:0,他引:1  
Al2O3 samples with Cu nanoparticles, synthesised by ion implantation at 40 keV with a dose of 1×1017 ion/cm2 and a current density from 2.5 to 12.5 μA/cm2, were annealed using ten pulses from a KrF excimer laser with a single pulse fluence of 0.3 J/cm2. The copper depth distribution, formation and modification of metal nanoparticles under the ion implantation and laser treatment were studied by Rutherford backscattering (RBS), energy dispersive X-ray (EDX) analysis, atomic force microscopy (AFM) and optical spectroscopy. It was found that laser annealing leads to a reduction in the nanoparticle size without diffusion of metal atoms into the bulk. The change in particle size and the possibility for oxidation of the copper particles are examined in the framework of Mie theory. Calculations presented show that under excimer laser treatment, Cu nanoparticles are more likely to be reduced in size than to undergo oxidation. Received: 19 April 2001 / Accepted: 7 November 2001 / Published online: 23 January 2002  相似文献   

16.
In this study, the grain boundary diffusion of Cu through a TiN layer with columnar structure was investigated by X-ray photoelectron spectroscopy (XPS). It was observed that Cu atoms diffuse from the Cu layer to the surface along the grain boundaries in the TiN layer at elevated temperature. In order to estimate the grain boundary diffusion constants, we used the surface accumulation method. The diffusivity of Cu through TiN layer with columnar structure from 400 °C to 650 °C is Db≈6×10−11exp(−0.29/(kBT )) cm2/s. Received: 18 May 1999 / Accepted: 8 September 1999 / Published online: 23 February 2000  相似文献   

17.
Ag-Cu离子注入玻璃后不同气氛退火的光吸收研究   总被引:3,自引:0,他引:3       下载免费PDF全文
张丽  蒋昌忠  任峰  陈海波  石瑛  付强 《物理学报》2004,53(9):2910-2914
采用MEVVA源(metal vapor vacuum arc ion source)引出的强束流脉冲Ag,Cu离子先后注入到SiO2玻璃,x射线光电子能谱仪(XPS)分析显示Ag,Cu大多仍为金属态,有部分氧化态Cu存在.透射电镜观察分析和光学吸收谱都表明在衬底中形成了纳米合金颗粒.结合有效媒质理论,得到模拟的光学吸收谱,与实验结果基本符合,较好地验证了以上结论.样品退火后颗粒发生分解,分解的颗粒在氧化气氛下被氧化,且有部分向样品表面蒸发;在还原气氛下氧化态元素被还原并成核生长.故 关键词: 离子注入 纳米颗粒 退火 光学吸收率  相似文献   

18.
Carbon ions at 40 keV were implanted into (1 0 0) high-purity p-type silicon wafers at 400 °C to a fluence of 6.5 × 1017 ions/cm2. Subsequent thermal annealing of the implanted samples was performed in a diffusion furnace at atmospheric pressure with inert nitrogen ambient at 1100 °C. Time-of-flight energy elastic recoil detection analysis (ToF-E ERDA) was used to investigate depth distributions of the implanted ions. Infrared transmittance (IR) and Raman scattering measurements were used to characterize the formation of SiC in the implanted Si substrate. X-ray diffraction analysis (XRD) was used to characterize the crystalline quality in the surface layer of the sample. The formation of 3C-SiC and its crystalline structure obtained from the above mentioned techniques was finally confirmed by transmission electron microscopy (TEM). The results show that 3C-SiC is directly formed during implantation, and that the subsequent high-temperature annealing enhances the quality of the poly-crystalline SiC.  相似文献   

19.
GaN phase is synthesized using systemic implantation of nitrogen ions of multiple energies (290, 130 and 50 keV) into Zn-doped GaAs (1 0 0) at room temperature and subsequent annealing at 850 °C for 30 min in Ar + H2 atmosphere. The implanted doses of nitrogen ions are 5 × 1016 and 1 × 1017 ions-cm−2. Glancing angle X-ray diffraction studies show that hexagonal phase of GaN were formed. The photoluminescence studies show the emission from the band edge as well as from point defects.  相似文献   

20.
Indium nanoclusters are synthesized in an amorphous silica matrix using an ion-implantation technique. Indium ions (In2+) with energy of 890 keV are implanted on silica to fluences in the range of 3×1016–3×1017 cm-2. The formation of indium nanoclusters is confirmed by optical absorption spectrometry and glancing incidence X-ray diffraction studies. A low frequency Raman scattering technique is used to study the growth of embedded indium nanoclusters in the silica matrix as a function of fluence and post-implantation annealing duration. Rutherford backscattering spectrometry studies show the surface segregation of implanted indium. Photoluminescence studies indicate the formation of a small quantity of indium oxide phase in the ion-implanted samples. PACS 85.40.Ry; 78.67.Bf; 73.20.Mf; 82.75.Fq  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号