首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Highly resolved solid-state HETCOR NMR spectra between protons and low gamma nuclei ((13)C and (29)Si) can be suitably obtained on surfaces using a "brute force" (1)H-(1)H decoupling by MAS at rates > or =40 kHz. Despite a small rotor volume (<10 microL), a (1)H-(13)C HETCOR spectrum of allyl groups (AL, -CH(2)-CH=CH(2)) covalently anchored to the surface of MCM-41 silica was acquired without using isotope enrichment. The advantages of using fast MAS in such studies include easy setup, robustness, and the opportunity of using low RF power for decoupling. In the case of the (1)H-(29)Si HETCOR experiment, the sensitivity can be dramatically increased, in some samples by more than 1 order of magnitude, through implementing into the pulse sequence a Carr-Purcell-Meiboom-Gill train of pi pulses at the (29)Si spin frequency. The use of low-power heteronuclear decoupling is essential in the (1)H-(29)Si CPMG-HETCOR experiment, due to unusually long acquisition periods. These methods provided detailed structural characterization of the surface of AL-MCM mesoporous silica.  相似文献   

2.
The covalent linkages formed during functionalization of MCM-41 mesoporous molecular sieves with five chloroalkylsilanes ((EtO)3Si(CH2Cl), (MeO)3Si(CH2CH2CH2Cl), Cl3Si(CH2CH2CH3), Cl2Si(CH3)(CH2Cl) and Cl2Si(CH3)2) have been investigated using high-resolution solid-state NMR spectroscopy and DFT calculations. Structural information was obtained from 1H-13C and 1H-29Si heteronuclear (HETCOR) NMR spectra, in which high resolution in the 1H dimension was obtained by using fast MAS. The 1H-13C HETCOR results provided the assignments of 1H and 13C resonances associated with the surface functional groups. Sensitivity-enhanced 1H-29Si HETCOR spectra, acquired using Carr-Purcell-Meiboom-Gill refocusing during data acquisition, revealed the identity of 29Si sites (Qn, Tn, and Dn) and the location of functional groups relative to these sites. Optimal geometries of local environments representing the Qn, Tn and Dn resonances were calculated using molecular mechanics and ab initio methods. Subsequently, DFT calculations of 29Si, 13C, and 1H chemical shifts were performed using Gaussian 03 at the B3LYP/6-311++G(2d,2p) level. The theoretical calculations are in excellent accord with the experimental chemical shifts. This work illustrates that state-of-the-art spectroscopic and theoretical tools can be used jointly to refine the complex structures of inorganic-organic hybrid materials.  相似文献   

3.
程晓维  汪靖  龙英才 《化学学报》2006,64(24):2389-2395
以X射线衍射(XRD), 红外光谱(FT-IR), 扫描电镜(SEM), 低温氮吸附, 29Si固体核磁共振(MAS NMR)等研究了含FER晶种的Na2O-SiO2-Al2O3干胶(SDG)在四氢呋喃(THF)/水(H2O)混合蒸气相中的结晶行为, 同时研究了体系中THF分子和[SiO4], [AlO4]基团在结晶前后状态的变化. 结果表明, 在THF/H2O混合蒸气中以蒸气相传输法(VPT)可合成结晶度较高、结构完美且孔道开放的FER沸石. 13C交叉极化固体核磁共振(CPMASNMR)和差热分析(TG-DTG-DTA)等研究证明THF分子作为模板剂, 位于FER笼内. FER晶种和水能促进FER沸石的结晶.  相似文献   

4.
Despite the numerous studies of the famous indigo-based pigment Maya Blue, there are still many questions regarding the elucidation of its structure. Here, two-dimensional (2D) (1)H-(29)Si heteronuclear correlation (HETCOR) spectroscopy with frequency-switched Lee-Goldburg (FSLG) homonuclear decoupling is applied to sepiolite and sepiolite-indigo complexes. Owing to the high resolution in the (1)H dimension of the 2D (1)H-(29)Si HETCOR spectrum obtained by FSLG homonuclear decoupling, the assignment of the (29)Si cross-polarization magic-angle spinning (CPMAS) spectrum of sepiolite is clearly confirmed. Moreover, 2D (1)H-(29)Si FSLG-HETCOR spectroscopy gives the first direct evidence that some indigo molecules are inserted in the sepiolite structure whereas no interaction between indigo and the external side surface (silanol groups) is observed in the (29)Si CPMAS spectra. These results are consistent with the fact that indigo molecules interact with water coordinated to magnesium and suggest that Maya Blue made from sepiolite is not a surface complex.  相似文献   

5.
A compound formulated as (C4H12N2)[Ge2(pmida)2(OH)2] x 4 H2O (where pmida(4-) = N-(phosphonomethyl)iminodiacetate and C4H12N2(2+) = piperazinedium cation), containing the anionic [Ge2(pmida)2(OH)2]2- complex, has been synthesised by the hydrothermal approach and its structure determined by single-crystal X-ray diffraction analysis. Several high-resolution solid-state magic-angle spinning (MAS) NMR techniques, in particular two-dimensional 1H-X(13C,31P) heteronuclear correlation (HETCOR) and 1H-1H homonuclear correlation (HOMCOR) experiments incorporating a frequency-switched Lee-Goldburg (FS-LG) decoupling scheme, have been employed for the first time in such a material. Using these tools in tandem affords an excellent general approach to study the structure of other inorganic-organic hybrids. We assigned the NMR resonances with the help of C...H and P...H internuclear distances obtained through systematic statistical analyses of the crystallographic data. The compound was further characterised by powder X-ray diffraction techniques, IR and Raman spectroscopy, and by elemental and thermal analyses (thermogravimetric analysis and differential scanning calorimetry).  相似文献   

6.
We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.  相似文献   

7.
The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.  相似文献   

8.
Affinity index (AT value), adsorption heat, X-ray diffraction (XRD), and 13C and 29Si magic-angle spinning (MAS) NMR, FTIR, and Raman spectroscopies were used to study the interaction of highly siliceous MFI-, FAU-, and FER-type zeolites with adsorbed methylamine (MA). Compared with the data for methanol, the much higher AT values and adsorption heats, and significant changes in XRD patterns, 29Si MAS NMR spectra, and FTIR spectra for the zeolites after adsorption of MA, revealed a strong hydrogen-bonding interaction between the perfect framework of the zeolites and the adsorbed MAs. This interaction results from the fact that the H atom of the amine group attacks the [Si-O] framework to form a Si-OHN bond, which leads to the appearance of Si-N bonds in the zeolites at 323 K. Therefore, the zeolite framework can be modified with MA under mild conditions. The highly siliceous MFI zeolite and the H-ZSM-5 zeolite with SiO2/Al2O3=31:1 were modified with MA and investigated by temperature-programmed desorption of CO2. The modified zeolites exhibited greatly enhanced basic properties in comparison with those of the raw materials. The influence of defects in the zeolite on the adsorption and the interaction with MA is discussed.  相似文献   

9.
曹宇  束怡  洪春雪  娄杰  束家有 《应用化学》2012,29(2):174-179
通过1,4-对苯二酚二缩水甘油醚和2,2′-二苯并咪唑二乙胺反应合成四苯并咪唑单体(TBMZ),经甲醛等缩合生成酚醛聚合物为基质的苯并咪唑螯合树脂(PTBMZs)。 新型螯合树脂配基含量达2.1~3.02 mmol/g。新树脂及其单体结构经13C核磁共振谱、FT-IR红外光谱、元素分析和DSC分析确证。 测定了Cu2+、Ni2+、Zn2+、Cd2+和Co2+氯化物在pH值为1.0~6.0的缓冲溶液中的配位容量。 实验结果表明,该类螯合树脂对Cu2+有高度的选择性,KCuX≥4.3非竞争条件下,PTBMZ-1的最大配位容量为1.15 mmol/g(pH=5.0,Cu2+),PTBMZ-2的最大配位容量为0.97 mmol/g(pH=5.0,Cu2+),配基占有率分别为35.9%,33.4%。 PTBMZ-1树脂对Cu2+吸附较快,t1/2=21 min。 电子顺磁共振谱和FT-IR光谱分析结果表明,形成n(金属离子)∶n(配基)=1∶2的螯合物为主。  相似文献   

10.
Solid-state 13C nuclear magnetic resonance (13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.  相似文献   

11.
In this investigation we report a complete assignment of (13)C, (1)H and (15)N solution and solid state chemical shifts of two bacterial photosynthetic pigments, bacteriochlorophyll (BChl) a and bacteriopheophytin (BPheo) a. Uniform stable-isotope labelling strategies were developed and applied to biosynthetic preparation of photosynthetic pigments, namely uniformly (13)C, (15)N labelled BChl a and BPheo a. Uniform stable-isotope labelling with (13)C, (15)N allowed performing the assignment of the (13)C, (15)N and (1)H resonances. The photosynthetic pigments were isolated from the biomass of photosynthetic bacteria Rhodopseudomonas palustris 17001 grown in uniformly (13)C (99%) and (15)N (98%) enriched medium. Both pigments were characterised by NMR in solution (acetone-d(6)) and by MAS NMR in solid state and their NMR resonances were recorded and assigned through standard liquid 2D (13)C-(13)C COSY, (1)H-(13)C HMQC, (1)H-(15)N HMBC and solid 2D (13)C-(13)C RFDR, (1)H-(13)C FSLG HETCOR and (1)H-(15)N HETCOR correlation techniques at 600 MHz and 750 MHz. The characterisation of pigments is of interest from biochemical to pharmaceutical industries, photosynthesis and food research.  相似文献   

12.
Until now, the solid-state photo-CIDNP effect, discovered in 1994 by Zysmilich and McDermott, has been observed selectively in photosynthetic systems. Here we present the first observation of this effect in a nonphotosynthetic system, the blue-light photoreceptor phototropin LOV1-C57S using (13)C magic-angle spinning (MAS) NMR.  相似文献   

13.
Solid-state NMR spectra and powder X-ray diffraction of the two-component molecular complex composed of tryptamine and benzoic acid were observed to investigate the intermolecular interaction in the molecular complex. 1D (13)C CP/MAS NMR spectrum and powder X-ray diffraction pattern of the complex was clearly different from the convolution of each spectrum of the single component. 2D (1)H-(13)C heteronuclear-correlation (HETCOR) NMR technique indicated that the intermolecular interaction between the primary amine of tryptamine and the carboxyl group of benzoic acid must be related to the complex formation.  相似文献   

14.
This paper reports a new route for the intercalation of an ionic liquid, namely 1-ethyl pyridinium chloride, into the interlamellar spaces of kaolinite. The intercalation was achieved using a kaolinite-urea intercalate as a starting material. The results of the XRD, FTIR, and TGA analyses confirmed the intercalation of ethyl pyridinium in the interlamellar spaces of kaolinite. 13C CP/MAS spectra indicated the complete displacement of urea by ethyl pyridinium. 29Si and 27Al NMR spectra of the starting materials and the products are also discussed as well as the results of the elemental analysis of the produced nanohybrid material.  相似文献   

15.
A general strategy of structural analysis of alumina silicate by combining various solid‐state NMR measurements such as single pulse, multi‐quantum magic angle spinning, double‐quantum homo‐nuclear correlation under magic angle spinning (DQ‐MAS), and cross‐polarization hetero‐nuclear correlation (CP‐HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of 27Al in single pulse, DQ‐MAS, and even in triple‐quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ‐MAS methods for homo‐nuclear correlations between both 27Al–27Al and 29Si–29Si and by CP‐HETCOR for hetero‐nuclear correlations between 27Al–29Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina‐silicate minerals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.  相似文献   

17.
利用~1HNMR,~(13)CNMR谱研究了2,2’-二(对胺苯甲酯)-1,1’联萘的结构,并通过~1H-~1HCOSY,~(13)C-~1H异核相关及~(13)C-~1H异核远程相关谱进一步地确定了~1H谱和~(13)C谱中各谱峰的归属,为同类化合物的表征提供了一个依据.  相似文献   

18.
This paper highlights the use of two-dimensional (2D) solid-state NMR correlation techniques to probe the chemical homogeneity of organically modified silicate networks. Specifically, 29Si{1H} heteronuclear correlation (HETCOR) NMR experiments have revealed the spatial proximity of the two types of Si units present in a gel obtained from co-hydrolysis of methyldiethoxysilane and triethoxysilane. Similar information has also been obtained by using 2D 1H homonuclear correlation NMR spectroscopy. Such experiments were only possible by combining the use of high magnetic field (14.10 T) with fast MAS spinning rate (30 kHz).  相似文献   

19.
We report the preparation of polysiloxane-modified mesoporous silica gels derived from the acid catalysed hydrolysis of tetraethoxysilane (TEOS) and oligomeric silanol terminated polydimethylsiloxane (PDMS) in the presence of the non-ionic surfactant, octaethylene glycol monohexadecyl ether. The gels were characterised using thermal gravimetric analysis (TGA), infra-red (IR) spectroscopy, X-ray diffraction (XRD) and 29Si solid state cross-polarisation (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. TGA and IR spectroscopy showed the loss of surfactant after calcination and a decrease in the Si–OH band at 950 cm–1 indicated further condensation had occurred. This was confirmed by the increase in Q4 at –110 ppm, in 29Si MAS NMR spectroscopy, which also showed that calcination had led to the redistribution of PDMS forming a T species. XRD data showed ordering within the structure, with an initial d-spacing of 45 Å, decreasing to 35 Å after calcination.  相似文献   

20.
A lyotropic nonionic lamellar system composed of pentaethyleneglycol mono n-dodecyl ether and D(2)O was studied using natural abundance (13)C NMR under magic-angle spinning. Applying a two-dimensional recoupling method proposed by Dvinskikh (R-PDLF), (1)H-(13)C dipolar couplings were estimated over a range of temperatures (300-335 K), thus enabling analysis of structural changes in the liquid crystalline system. The results obtained are used to correlate the conformation and mobility of local sites in the surfactant molecule with overall changes in the lamellar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号