首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virtual screening of small molecule databases against macromolecular targets was used to identify binding ligands and predict their lowest energy bound conformation (i.e., pose). AutoDock4-generated poses were rescored using mean-field pathway decoupling free energy of binding calculations and evaluated if these calculations improved virtual screening discrimination between bound and nonbound ligands. Two small molecule databases were used to evaluate the effectiveness of the rescoring algorithm in correctly identifying binders of L99A T4 lysozyme. Self-dock calculations of a database containing compounds with known binding free energies and cocrystal structures largely reproduced experimental measurements, although the mean difference between calculated and experimental binding free energies increased as the predicted bound poses diverged from the experimental poses. In addition, free energy rescoring was more accurate than AutoDock4 scores in discriminating between known binders and nonbinders, suggesting free energy rescoring could be a useful approach to reduce false positive predictions in virtual screening experiments.  相似文献   

2.
The authors describe the development and testing of a semiempirical free energy force field for use in AutoDock4 and similar grid-based docking methods. The force field is based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding. It also incorporates a charge-based method for evaluation of desolvation designed to use a typical set of atom types. The method has been calibrated on a set of 188 diverse protein-ligand complexes of known structure and binding energy, and tested on a set of 100 complexes of ligands with retroviral proteases. The force field shows improvement in redocking simulations over the previous AutoDock3 force field.  相似文献   

3.
The prediction of the binding free energy between a ligand and a protein is an important component in the virtual screening and lead optimization of ligands for drug discovery. To determine the quality of current binding free energy estimation programs, we examined FlexX, X-Score, AutoDock, and BLEEP for their performance in binding free energy prediction in various situations including cocrystallized complex structures, cross docking of ligands to their non-cocrystallized receptors, docking of thermally unfolded receptor decoys to their ligands, and complex structures with "randomized" ligand decoys. In no case was there a satisfactory correlation between the experimental and estimated binding free energies over all the datasets tested. Meanwhile, a strong correlation between ligand molecular weight-binding affinity correlation and experimental predicted binding affinity correlation was found. Sometimes the programs also correctly ranked ligands' binding affinities even though native interactions between the ligands and their receptors were essentially lost because of receptor deformation or ligand randomization, and the programs could not decisively discriminate randomized ligand decoys from their native ligands; this suggested that the tested programs miss important components for the accurate capture of specific ligand binding interactions.  相似文献   

4.
Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding data set has been assembled from the literature. The data set contains information from 262 unique protein-carbohydrate crystal structures for which experimental binding information is known. Hydrogen atoms were added to the structures and training conformations were generated with the automated docking program AutoDock 3.06, resulting in a training set of 225,920 all-atom conformations. In all, 288 formulations of the AutoDock 3.0 free energy model were trained against the data set, testing each of four alternate methods of computing the van der Waals, solvation, and hydrogen-bonding energetic components. The van der Waals parameters from AutoDock 1 produced the lowest errors, and an entropic model derived from statistical mechanics produced the only models with five physically and statistically significant coefficients. Eight models predict the Gibbs free energy of binding with an error of less than 40% of the error of any similar models previously published.  相似文献   

5.
6.
Abstract

A new approach for virtual characterization of the active site structure of enzymes with unknown three-dimensional (3D) structure has been proposed. It includes analysis of data on enzyme interaction with reversible competitive inhibitors, their 3D structures and moulding of the substrate-binding region. The superposition of ligands in biologically active conformations allows to determine the shape and dimension of the active site cavity accommodating these compounds. Monoamine oxidase A (MAO-A), a “typical” enzyme with unknown spatial organisation, was used to test this method. The correctness of such approach was validated by the analysis of HIV protease interaction with its inhibitors using 3D structures of their complexes. Mould of the substrate/inhibitor binding site can be used for the visualization of this binding site and for searching new ligands in molecular databases.  相似文献   

7.
We describe the testing and release of AutoDock4 and the accompanying graphical user interface AutoDockTools. AutoDock4 incorporates limited flexibility in the receptor. Several tests are reported here, including a redocking experiment with 188 diverse ligand‐protein complexes and a cross‐docking experiment using flexible sidechains in 87 HIV protease complexes. We also report its utility in analysis of covalently bound ligands, using both a grid‐based docking method and a modification of the flexible sidechain technique. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

8.
9.
This paper describes the validation of a molecular docking method and its application to virtual database screening. The code flexibly docks ligand molecules into rigid receptor structures using a tabu search methodology driven by an empirically derived function for estimating the binding affinity of a protein-ligand complex. The docking method has been tested on 70 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. The lowest energy geometry produced by the docking protocol is within 2.0 A root mean square of the experimental binding mode for 79% of the complexes. The method has been applied to the problem of virtual database screening to identify known ligands for thrombin, factor Xa, and the estrogen receptor. A database of 10,000 randomly chosen "druglike" molecules has been docked into the three receptor structures. In each case known receptor ligands were included in the study. The results showed good separation between the predicted binding affinities of the known ligand set and the database subset.  相似文献   

10.
11.
Parallel Screening has been introduced as an in silico method to predict the potential biological activities of compounds by screening them with a multitude of pharmacophore models. This study presents an early application example employing a Pipeline Pilot-based screening platform for automatic large-scale virtual activity profiling. An extensive set of HIV protease inhibitor pharmacophore models was used to screen a selection of active and inactive compounds. Furthermore, we aimed to address the usually critically eyed point, whether it is possible in a parallel screening system to differentiate between similar molecules/molecules acting on closely related proteins, and therefore we incorporated a collection of other protease inhibitors including aspartic protease inhibitors. The results of the screening experiments show a clear trend toward most extensive retrieval of known active ligands, followed by the general protease inhibitors and lowest recovery of inactive compounds.  相似文献   

12.
To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein–ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new “Rank Difference Ratio” metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4’s very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the “HIV Interaction and Viral Evolution Center”.  相似文献   

13.
Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present S tructure t emplate-based a b initio li gand design s olution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.  相似文献   

14.
The binding properties of a series of benzenesulfonamide inhibitors (4‐substituted‐ureido‐benzenesulfonamides, UBSAs) of human carbonic anhydrase II (hCA II) enzyme with active site residues have been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. To account for the important docking interactions between the UBSAs ligand and hCA II enzyme, a molecular docking program AutoDock Vina is used. The molecular docking results obtained by AutoDock Vina revealed that the docked conformer has root mean square deviation value less than 1.50 Å compared to X‐ray crystal structures. The inhibitory activity of UBSA ligands against hCA II is found to be in good agreement with the experimental results. The thermodynamic parameters for inhibitor binding show that hydrogen bonding, hydrophilic, and hydrophobic interactions play a major role in explaining the diverse inhibitory range of these derivatives. Additionally, natural bond orbital analysis is performed to characterize the ligand–metal charge transfer stability. The insights gained from this study have great potential to design new hCA‐II inhibitor, 4‐[3‐(1‐p‐Tolyl‐4‐trifluoromethyl‐1H‐pyrazol‐3‐yl)‐ureido]‐benzenesulfonamide, which belongs to the family of UBSA inhibitors and shows similar type of inhibitor potency with hCA II. This work also reveals that a QM/MM model and molecular docking method are computationally feasible and accurate for studying substrate–protein inhibition. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Tropomyosin-related kinase A (TrkA) is a promising target for the development of cancer and pain therapeutics. Here, we report the first successful example of the use of a structure-based virtual screening to identify novel TrkA inhibitors. The accuracy of the virtual screening was improved by introducing an accurate solvation free energy term into the original AutoDock scoring function. We applied a drug design protocol involving homology modeling, docking analysis of a large chemical library, and enzyme inhibition assays to identify six structurally diverse TrkA inhibitors with K(d) values ranging from 3 to 40 μM. The significant potencies and good physicochemical properties of these drug candidates strongly support their consideration in a development effort that would involve structure-activity relationship (SAR) studies to optimize the inhibitory activities. We also addressed the structural and energetic features associated with binding of the newly identified inhibitors in the ATP-binding site of TrkA. The results indicate that any structural modifications introduced for the purpose of enhancing the activity of TrkA inhibitors should maximize the attractive interactions within the ATP-binding site and simultaneously minimize the desolvation cost for complexation.  相似文献   

16.
17.
The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002–2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.  相似文献   

18.
19.
20.
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号