首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the hole and electron mobilities in naphthalene crystal from 10 to 300 K within the framework of the Holstein-Peierls model coupled with first-principles density-functional-theory-projected tight-binding band structures. All the electron-phonon coupling constants, including both local and nonlocal parts for inter- and intramolecular vibrations, have been taken into considerations through density functional theory. The band-hopping crossover transition temperature for the electron transport in the c' axis is calculated to be around 23 K. We have identified a few high frequency intramolecular vibrations which are very important to the charge transport in naphthalene crystal due to their comparatively large electron-phonon coupling constants. However, their contributions to the temperature dependence of mobility are minor because of the small phonon occupations and small nonlocal coupling strengths. The low frequency intermolecular modes (longitudinal optical modes) are found to be the major contributions to the temperature dependent charge transfer properties in naphthalene crystal. Even though the calculated qualitative temperature dependence is in agreement with experiment, the predicted absolute mobility is about one to two orders of magnitude larger.  相似文献   

2.
We calculated the hole and electron mobilities of tetrathiafulvalene (TTF) derivative crystals using first-principles calculations and the Marcus theory of electron transfer. The hole and electron reorganization energies were found to decrease with the extension of π-conjugated orbitals. The calculated hole mobilities of TTF, dibenzo-tetrathiafulvalene (DB-TTF), and dinaphtho-tetrathiafulvalene (DN-TTF) agree well with the experimental results. In addition, with the increase of the number of benzene rings attached to the TTF skeleton, the hole mobilities decrease and the electron mobilities increase. The calculated electron mobility of dianthro-tetrathiafulvalene (DA-TTF) based on a virtual crystal structure is much larger than the hole one due to the small electron reorganization energy and large electron coupling. This suggests that the charge transfer properties of the TTF derivatives can be modified when the number of aromatic rings on TTF skeleton increases.  相似文献   

3.
Discotic liquid crystal (DLC) materials have attracted considerable attention mainly due to their high charge carrier mobilities in quasi‐one‐dimensional columns. In this article, five hexaazatrinaphthylene‐based DLC molecules were investigated theoretically, and their frontier molecular orbital energy levels, crystal structures, and electron/hole drift mobilities were calculated by combination of density functional theory (DFT) and semiclassical Marcus charge transfer theory. The systems studied in this work include three experimentally reported molecules ( 1 , 2 , and 3 ) and two theoretically designed molecules ( 4 and 5 ). Compared with the 1 – 3 compounds, 4 and 5 have three more extended benzene rings in the π‐conjugated core. The present results show that the orders of the frontier molecular orbital energy levels and electron drift mobilities agree very well with the experiment. For 4 and 5 , the electron/hole reorganization energies are lower than those of compounds 1 – 3 . Furthermore, the calculated electron/hole transfer integral of 5 is the largest among all the five systems, leading to the highest electron and hole mobilities. In addition, the hydrophobicity and solubility were also evaluated by DFT, indicating that compound 5 has good hydrophobicity and good solubility in trichloromethane. As a result, it is expected that compound 5 can be a potential charge transport material in electronic and optoelectronic devices. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
用电子转移的半经典模型在量子化学B3LYP/6-31G(d)水平(对单体)和B3LYP/STO-3G水平(对二聚物)对环聚炔苯和环聚炔吡啶组成的盘状液晶体系的电荷转移性质进行了研究. 盘状液晶体系的电荷转移速率主要依赖于重组能和电荷转移矩阵元, 重组能越小, 电荷转移矩阵元越大, 则电荷转移速率常数越大. 计算结果表明, 这些大环化合物比目前广泛研究和应用的苯并菲衍生物组成的液晶有较小的重组能, 所以有更好的电荷转移性质. 计算结果对有效地设计和合成高效的光导材料和载流子输送材料是有帮助的.  相似文献   

5.
Polymorphism is a challenging phenomenon and the competitive packing alternatives which are characteristic for polymorphs may be encountered for essentially rigid molecules. A second crystal form of the well known compound o‐nitrobenzoic acid, C7H5NO4, an important intermediate in the production of dyes, pharmaceuticals and agrochemicals, is described. Although obtained serendipitously, its intra‐ and intermolecular features match expectations from database searches and theoretical calculations. O—H…O hydrogen‐bonded carboxylic acid dimers represent the building blocks in both polymorphs. For steric reasons and in agreement with a calculated potential energy surface, the carboxylic acid and nitro groups cannot simultaneously be coplanar with the benzene ring but have to tilt. In the well established crystal form, this out‐of‐plane torsion is more pronounced for the nitro substituent. In contrast, the new polymorph is characterized by a major tilt of the carboxylic acid group. The molecules in both alternative crystal forms achieve a similar compromise with respect to acceptable intramolecular O…O contacts.  相似文献   

6.
Two equivalent methods of calculating effective molecular polarizabilities from crystal electric susceptibilities are compared. For monoclinic crystals containing two molecules per unit cell, there is no unique solution. The range of solutions is examined for naphthalene, anthracene, biphenyl, p-terphenyl and phenanthrene, treated as polarizable points. For all these molecules the largest polarizability component is unacceptable, owing to the point molecule approximation. When the interactions between molecules are calculated as averages between aromatic rings, more realistic polarizabilities result, showing variations consistent with the molecular geometry. Comparable results are obtained for benzene (orthorhombic). It is concluded that reliable polarizabilities should become available by developments of such an approach.  相似文献   

7.
The predicted stability differences of the conformational polymorphs of oxalyl dihydrazide and ortho-acetamidobenzamide are unrealistically large when the modeling of intermolecular energies is solely based on the isolated-molecule charge density, neglecting charge density polarization. Ab initio calculated crystal electron densities showed qualitative differences depending on the spatial arrangement of molecules in the lattice with the greatest variations observed for polymorphs that differ in the extent of inter- and intramolecular hydrogen bonding. We show that accounting for induction dramatically alters the calculated stability order of the polymorphs and reduces their predicted stability differences to be in better agreement with experiment. Given the challenges in modeling conformational polymorphs with marked differences in hydrogen bonding geometries, we performed an extensive periodic density functional study with a range of exchange-correlation functionals using both atomic and plane wave basis sets. Although such electronic structure methods model the electrostatic and polarization contributions well, the underestimation of dispersion interactions by current exchange-correlation functionals limits their applicability. The use of an empirical dispersion-corrected density functional method consistently reduces the structural deviations between the experimental and energy minimized crystal structures and achieves plausible stability differences. Thus, we have established which types of models may give worthwhile relative energies for crystal structures and other condensed phases of flexible molecules with intra- and intermolecular hydrogen bonding capabilities, advancing the possibility of simulation studies on polymorphic pharmaceuticals.  相似文献   

8.
Elegant expressions are derived for the computation of dipole and quadrupole moments of molecules using the electrostatic potential and electric field evaluated on an oriented molecular surface. These expressions are implemented for Hirshfeld surfaces, applied to various molecular crystals, and compared with the results from the quantum theory of atoms in molecules. The effect of intermolecular interactions is also explored by examining the differences between electrostatic moments derived from a periodic Hartree-Fock electron density and an electron density resulting from a superposition of noninteracting molecules. The enhancement of the dipole moment for hydrogen bonded molecular crystals is typically 30%-40% and shown to be largely independent of the partitioning scheme. Dipole moments calculated from Hirshfeld surfaces systematically underestimate those from zero-flux surfaces, a result attributed to the translation of the Hirshfeld surface relative to the zero-flux surfaces for these molecules. For acetylene and benzene, the differences between a crystal calculation and the sum of noninteracting molecules are small, and both partitioning schemes yield quadrupole and second moment results in close agreement.  相似文献   

9.
The crystal‐packing structures of seven derivatives of diaroylmethanatoboron difluoride ( 1 a – gBF2 ) are characterized by no overlap of the π‐conjugated main units of two adjacent molecules (type I), overlap of the benzene ring π‐orbitals of two adjacent molecules (type II), and overlap of the benzene and dihydrodioxaborinine rings π‐orbitals of adjacent molecules (type III). The crystal‐packing structures govern the fluorescence (FL) properties in the crystalline states. The FL domain that is present in type I crystals, in which intermolecular orbital interactions are absent, leads to excited monomer‐like FL properties. In the case of the type II crystals, the presence of intermolecular overlap of the benzene rings π‐orbitals generates new FL domains, referred to as “excited multimers”, which possess allowed S0–S1 electronic transitions and, as a result, similar FL lifetimes at longer wavelengths than the FL of the type I crystals. Finally, intermolecular overlap of the benzene and dihydrodioxaborinine ring π‐orbitals in the type III crystals leads to “excited multimer” domains with forbidden S0–S1 electronic transitions and longer FL lifetimes at similar wavelengths as that in type I crystals.  相似文献   

10.
研究了在含不同浓度电子清除剂CCL_4或正穴清除剂吡啶的苯溶液和环己烷溶液中o-Ps强度的变化。结果表明,环己烷中电子和正离子的迁移率是很高的,苯中的迁移率也较高,但比环己烷中的小些。由我们导出的有关正穴清除剂使o-Ps强度增加的关系式表明,o-Ps强度的增强或抑制是电子清除和正穴清除这两个过程竞争的结果。  相似文献   

11.
Atovaquone, 2-[4-(4-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthoquinone, is an antimicrobial medicament used to treat or prevent pneumocystis carinii pneumonia, toxoplasmosis and malaria. Two polymorphs of Atovaquone (crystal phases I and III) were isolated and their crystal and molecular structures were determined by single crystal X-ray analysis. In both crystal phases, strong hydrogen bond interactions link adjacent molecules in centrosymmetric dimers. The existence of the different polymorphs is determined by the different orientation of the dimers in the crystal packing. In addition, a crystalline phase of the 2-chloro substituted derivative, which is not stabilized by intermolecular H-bond interactions, was also studied, and compared with those of the pristine (hydroxylic) species. DSC measurements and thermodiffractometry analyses on polycrystalline batches witnessed the 100% purity of the isolated materials and disclosed the crystal-to-crystal interconversion of phase I to phase III upon heating at 210 °C.  相似文献   

12.
13.
We found that tri-9-anthrylborane (TAB) recrystallized from benzene produced both red cubic-like (R-form) and orange hexagon-like crystals (O-form). In both crystal forms, six TAB molecules are arranged in a honeycomb structure in the ab plane and benzene molecules are incorporated in the honeycomb structure, whose spatial geometry and the total number of benzene rings in the unit cell are different between the two forms: polymorphs with a different benzene content. In the R-form crystal, furthermore, interlayer stacking between left- and right-handed helical TAB molecules was observed in the ac plane, while each layer composed of stacked TAB molecules along the c axis was separated by benzene molecules in the O-form crystal, giving rise to more dense packing of TAB in the R-form crystal as compared to that in the O-form. Reflecting the crystal structures of the two forms, the charge transfer (CT) absorption and fluorescence spectra of the R-form crystal were shifted to the longer wavelength as compared to those in the O-form (i.e., crystal and spectroscopic polymorphisms) and, therefore, electronic interactions between TAB were stronger in the R-form as compared to those in the O-form. Furthermore, in addition to the main absorption (lambdamaxa= 499 nm) and fluorescence peaks (lambdamaxf = 570 nm), distinct absorption (lambdaa = approximately 470 nm) and fluorescence bands (lambdaf = approximately 600 nm) were observed for the R-form crystal, while the relevant absorption band in the O-form crystal (lambdaa = approximately 460 nm) or in solution (lambda(a) = approximately 435 nm) was ambiguous. The results were discussed in terms of participation of the higher energy second CT transition in TAB.  相似文献   

14.
The intermolecular interaction energies of naphthalene dimers have been calculated by using an aromatic intermolecular interaction model (a model chemistry for the evaluation of intermolecular interactions between aromatic molecules). The CCSD(T) (coupled cluster calculations with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the second-order M?ller-Plesset perturbation interaction energy near saturation and the CCSD(T) correction term obtained using a medium-size basis set. The estimated interaction energies of the set of geometries explored in this work show that two structures emerge as being the lowest energy, and may effectively be considered as isoenergetic on the basis of the errors inherent in out extrapolation procedure. These structures are the slipped-parallel (Ci) structure (-5.73 kcal/mol) and the cross (D2d) structure (-5.28 kcal/mol). The T-shaped (C2v) and sandwich (D2h) dimers are substantially less stable (-4.34 and -3.78 kcal/mol, respectively). The dispersion interaction is found to be the major source of attraction in the naphthalene dimer. The electrostatic interaction is substantially smaller than the dispersion interaction. The large dispersion interaction is the cause of the large binding energies of the cross and slipped-parallel dimers.  相似文献   

15.
Due to the different molecular stacking conformations, two kinds of intermolecular interactions, arene–arene π-stacking interaction and Cu–Cu interaction coexist in the polymorphs of [C6F5Cu]2(4,4′-bipy) crystals, 3-α and 3-β. However, the relative magnitude of the two kinds of intermolecular interactions in 3-α and 3-β is different. With the help of first-principle band structure calculations, the relationship between the charge transport abilities and the intermolecular interactions in the two polymorphs was investigated for the first time. The analysis of band structures and Г point wave functions of the band-edge state in the valence band of crystal 3-α shows that the Cu–Cu interaction so-called cuprophilic interaction determines the hole transport ability, although this interaction is weaker than that in crystal 2 of C6F5Cu(py) discussed in our previous work, which is a promising hole transport material. For polymorph crystal 3-β, the wave functions of LUMO are mainly localized on the bipyridine (bpy) groups, which are result from the arene–arene π-stacking interaction between the bpy groups. Such a π–π stacking interaction dominates the electron transport ability in the conduction band of 3-β and makes the electron main carrier for transporting. The results are also supported by the analysis of effective masses and density of states (DOS). Thus, the charge transport properties are dominated by different intermolecular interactions due to the different molecule stacking in the two polymorphs.  相似文献   

16.
The crystal structure of fluorobenzene is compared with isomorphous crystal structures of molecules of roughly similar shape. The lowest-energy fluorobenzene dimers are identified by theoretical calculations. Molecular pair analysis of the crystal structure of fluorobenzene and of an isomorphous virtual low-energy polymorph of benzene suggests that the important intermolecular interactions in the two structures are closely similar. In particular, the intermolecular C-H...F interactions in the fluorobenzene crystal have approximately the same structure-directing ability and influence on the intermolecular energy as the corresponding C-H...H interactions in benzene. Molecular pair analysis of the isomorphous crystal structures of benzonitrile, alloxan, and cyclopentene-1,2,3-trione indicates that essentially the same crystal structure can be adopted with quite different patterns of pair energies and atom-atom interactions. The question as to whether the packing radius of organic fluorine is larger or smaller than that of hydrogen, is addressed, but not answered.  相似文献   

17.
Crystal structure of benzene–acetylene co-crystal was analysed based on calculated energies of intermolecular interactions between basic molecules located in asymmetric part of unit cell and their neighbours belonging to their first coordination sphere. It is demonstrated that the basic structural motif of the crystal is represented by infinite chains formed by the hydrogen-bonded benzene and acetylene molecules. Energy of interaction of the basic pair of molecules to neighbours within the chain is 2.2 times higher than the energy of interactions with molecules of any neighbouring chain. This ratio almost does not depend on method of calculation of interaction energy. Also, results of calculations were compared with analysis of topology of electron density distribution in crystal. The possibility to find the basic structural motif of the crystal based on properties of intermolecular bond critical points is demonstrated.  相似文献   

18.
《Liquid crystals》2001,28(3):327-331
Temperature-dependent polarized infrared spectra were measured over the temperature range 105-30°C for a ferroelectric liquid crystal with a naphthalene ring (FLC-1) in the isotropic, smectic A (SmA), and chiral smectic C (SmC*) phases to investigate its molecular conformation, interactions, and alignment in each phase. It has been found, from the temperaturedependent spectral changes in the 1610-1600 cm-1 region, that the degree of twist between the naphthalene and benzene rings of FLC-1 changes with temperature. The peak intensity of the band at 1606 cm-1 containing contributions from both the benzene and naphthalene ring stretching modes begins to decrease, not suddenly but gradually, upon going from the SmA phase to the SmC* phase, suggesting that the molecular orientation of the two rings changes gradually between the two phases. The frequencies of two CH2 stretching bands suggest that the disorder of the alkyl chain of FLC-1 is similar for the liquid crystal phase and the isotropic liquid phase. The splitting of the core C=O stretching band indicates that the resonance system consisting of the benzene ring and the C=O group in the core part of FLC-1 is involved in two kinds of intermolecular interaction between adjacent molecules in the liquid crystal phase.  相似文献   

19.
Temperature-dependent polarized infrared spectra were measured over the temperature range 105-30°C for a ferroelectric liquid crystal with a naphthalene ring (FLC-1) in the isotropic, smectic A (SmA), and chiral smectic C (SmC*) phases to investigate its molecular conformation, interactions, and alignment in each phase. It has been found, from the temperaturedependent spectral changes in the 1610-1600 cm-1 region, that the degree of twist between the naphthalene and benzene rings of FLC-1 changes with temperature. The peak intensity of the band at 1606 cm-1 containing contributions from both the benzene and naphthalene ring stretching modes begins to decrease, not suddenly but gradually, upon going from the SmA phase to the SmC* phase, suggesting that the molecular orientation of the two rings changes gradually between the two phases. The frequencies of two CH2 stretching bands suggest that the disorder of the alkyl chain of FLC-1 is similar for the liquid crystal phase and the isotropic liquid phase. The splitting of the core C=O stretching band indicates that the resonance system consisting of the benzene ring and the C=O group in the core part of FLC-1 is involved in two kinds of intermolecular interaction between adjacent molecules in the liquid crystal phase.  相似文献   

20.
The intermolecular interaction energies of thiophene dimers have been calculated by using an aromatic intermolecular interaction (AIMI) model (a model chemistry for the evaluation of intermolecular interactions between aromatic molecules). The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium-size basis set. The calculated interaction energies of the parallel and perpendicular thiophene dimers are -1.71 and -3.12 kcal/mol, respectively. The substantial attractive interaction in the thiophene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge transfer but rather long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases the attraction significantly. The dispersion interaction is found to be the major source of attraction in the thiophene dimer. The calculated total interaction energy of the thiophene dimer is highly orientation dependent. Although electrostatic interaction is substantially weaker than dispersion interaction, it is highly orientation dependent, and therefore electrostatic interaction play an important role in the orientation dependence of the total interaction energy. The large attractive interaction in the perpendicular dimer is the cause of the preference for the herringbone structure in the crystals of nonsubstituted oligothiophenes (alpha-terthienyls), and the steric repulsion between the beta-substituents is the cause of the pi-stacked structure in the crystals of some beta-substituted oligothiophenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号