首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.  相似文献   

2.
The primary alpha and the secondary Johari-Goldstein (JG) beta relaxations of supercooled glass-forming neat epoxy resin and 2-picoline in mixture with tristyrene are monitored by broadband dielectric relaxation spectroscopy at ambient pressure and elevated pressures. For different combinations of pressure and temperature that maintain the alpha-relaxation time constant, the frequency dispersion of the alpha relaxation is unchanged, as previously found in other glass-formers, but remarkably the JG beta-relaxation time remains constant. This is more clear evidence of a strong connection between the alpha- and JG beta-relaxation times, a fact that should be taken into account in the construction of a viable theory of glass transition.  相似文献   

3.
The dielectric relaxation spectra of D-sorbitol glass have been studied in real time during annealing at 221.1 K, which is 47 K below its T(g) of 268 K. As the glass structurally relaxes during annealing, features of the Johari-Goldstein (JG) relaxation change with time: (i) the relaxation strength decreases, (ii) the relaxation peak at 48 Hz shifts to a higher frequency, and (iii) the relaxation spectra become narrower. All seem to follow the relation p proportional, variant exp[-(kt)(n)], where p is the magnitude of a property, k the rate constant, and t the time. The parameter n may well be less than 1, but this could not be ascertained. It is proposed that shift of the relaxation peak to a higher frequency and narrowing of the relaxation spectra occur when local, loosely packed regions of molecules in the glass structure collapse nonuniformly and the relaxation time of some of the molecules in the collapsed state becomes too long to contribute to the JG-relaxation spectra. Consequently, the half width of the spectra decreases, and the relaxation peak shifts to a higher frequency. Molecules whose diffusion becomes too slow after the local regions' collapse would contribute to the alpha-relaxation spectra and thus the net relaxation strength would increase on structural relaxation. It is argued that these findings conflict with the NMR-based conclusions that motion of all molecules in the glass and supercooled liquid contributes to the faster relaxation process.  相似文献   

4.
In the present paper we study the enthalpy relaxation behavior of the hyperquenched GeO(2) (HQGeO(2)) glass, one of the strongest glass systems. By applying the hyperquenching-annealing-calorimetry approach, we have found that unlike fragile glasses the strong HQGeO(2) glass relaxes in a manner that all the secondary relaxation units contribute to the primary relaxation. By analyzing dynamic properties of the secondary relaxation, we have identified two typical features of the Johari-Goldstein relaxation in the HQGeO(2) glass. First, the quantitative relationship observed here between E(beta) and T(g) agrees well with the empirical relation of the JG relaxation. Second, the characteristic relaxation time of the GeO(2) glass at T(g) is found to be about 10 s, larger than that of relatively fragile glasses. These results verify that the JG peak in strong glasses is hidden by the alpha peak in the dielectric loss curves.  相似文献   

5.
We investigated the frequency dependent dielectric relaxation behaviors of anhydrous trehalose and maltose glasses in the temperature range which covers a supercooled and glassy states. In addition to the α-, Johari-Goldstein (JG) β-, and γ-relaxations in a typical glass forming system, we observed an extra relaxation process between JG β- and γ-relaxations in the dielectric loss spectra. We found that the unknown extra relaxation is a unique property of disaccharide which might originate from the intramolecular motion of flexible glycosidic bond. We also found that the temperature dependence of the JG β-relaxation time changes at 0.95T(g) and it might be universal.  相似文献   

6.
The equilibrium permittivity epsilon(s) and the dielectric relaxation spectra of supercooled liquid D-sorbitol were measured during its crystallization to orientationally disordered or ordered phases depending on the sample preparation procedure at several fixed temperatures up to a period of 6 days. The epsilon(s) measurements showed that when the sample was contaminated by a minute amount of crystals, it crystallized to an ordered phase. When the liquid was not contaminated, the sample crystallized to an orientationally disordered phase. When supercooled D-sorbitol was kept close to its T(g), its dielectric spectra did not change over a period of 138.5 h. It was found that the Johari-Goldstein (JG) relaxation rate of the orientationally disordered crystalline phase is higher in comparison with that of the supercooled liquid, the spectrum broader, and the relaxation strength lower. Its glasslike transition temperature is higher than T(g) of the liquid. The results on crystallization showed that the structural changes occurring at a temperature where the alpha relaxation emerges from the JG relaxation affects the crystallization kinetics of the liquid.  相似文献   

7.
Broadband dielectric spectroscopy was used to study the relaxation dynamics in bis-5-hydroxypentylphthalate (BHPP) under both isobaric and isothermal conditions. The relaxation dynamics exhibit complex behavior, arising from hydrogen bonding in the BHPP. At ambient pressure above the glass transition temperature T(g), the dielectric spectrum shows a broad structural relaxation peak with a prominent excess wing toward higher frequencies. As temperature is decreased below T(g), the excess wing transforms into two distinct peaks, both having Arrhenius behavior with activation energies equal to 58.8 and 32.6 kJmol for slower (beta) and faster (gamma) processes, respectively. Furthermore, the relaxation times for the beta process increase with increasing pressure, whereas the faster gamma relaxation is practically insensitive to pressure changes. Analysis of the properties of these secondary relaxations suggests that the beta peak can be identified as an intermolecular Johari-Goldstein (JG) process. However, its separation in frequency from the alpha relaxation, and both its activation energy and activation volume, differ substantially from values calculated from the breadth of the structural relaxation peak. Thus, the dynamics of BHPP appear to be an exception to the usual correlation between the respective properties of the structural and the JG secondary relaxations.  相似文献   

8.
We report evidence from broadband dielectric spectroscopy that the dynamics of the primary alpha- and secondary Johari-Goldstein (JG) beta-processes are strongly correlated in different glass-forming systems over a wide temperature T and pressure P range, in contrast with the widespread opinion of statistical independence of these processes. The alpha-beta mutual dependence is quantitatively confirmed by (a) the overall superposition of spectra measured at different T-P combinations but with an invariant alpha-relaxation time; (b) the contemporary scaling of the isothermal-pressure and isobaric-temperature dependences of the alpha-and beta-relaxation times as plotted versus the reduced variable Tg(P)/T where Tg is the glass transition temperature. These novel and model-independent evidences indicate the relevance of the JG relaxation phenomenon in glass transition, often overlooked by most current theories.  相似文献   

9.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -12. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -12 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.  相似文献   

10.
The dielectric spectra of the glass former, m-fluoroaniline (m-FA), at ambient pressure show the presence of a secondary relaxation, which was identified in the literature as the universal Johari-Goldstein (JG) beta relaxation. However, published elastic neutron scattering and simulation data [D. Morineau, C. Alba-Simionesco, M. C. Bellisent-Funel, and M. F. Lauthie, Europhys. Lett. 43, 195 (1998); D. Morineau and C. Alba-Simionesco, J. Chem. Phys. 109, 8494 (1998)] showed the presence of hydrogen-bond-induced clusters of limited size in m-FA at ambient pressure and temperature of the dielectric measurements. The observed secondary relaxation may originate from the hydrogen-bond-induced clusters. If so, it should not be identified with the JG beta relaxation that involves essentially all parts of the molecule and has certain characteristics [K. L. Ngai and M. Paluch, J. Chem. Phys. 120, 857 (2004)], but then arises the question of where is the supposedly universal JG beta relaxation in m-FA. To gain a better understanding and resolving the problem, we perform dielectric measurements at elevated pressures and temperatures to suppress the hydrogen-bond-induced clusters and find significant changes in the dielectric spectra. The secondary relaxation observed at ambient pressure in m-FA is suppressed, indicating that indeed it originates from the hydrogen-bond-induced clusters. The spectra of m-FA are transformed at high temperature and pressure to become similar to that of toluene. The new secondary relaxation that emerges in the spectra has properties of a genuine JG relaxation like in toluene.  相似文献   

11.
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007  相似文献   

12.
Broad-band dielectric measurements for fructose-water mixtures with fructose concentrations between 70.0 and 94.6 wt% were carried out in the frequency range of 2 mHz to 20 GHz in the temperature range of -70 to 45 degrees C. Two relaxation processes, the alpha process at lower frequency and the secondary beta process at higher frequency, were observed. The dielectric relaxation time of the alpha process was 100 s at the glass transition temperature, T(g), determined by differential scanning calorimetry (DSC). The relaxation time and strength of the beta process changed from weaker temperature dependences of below T(g) to a stronger one above T(g). These changes in behaviors of the beta process in fructose-water mixtures upon crossing the T(g) of the mixtures is the same as that found for the secondary process of water in various other aqueous mixtures with hydrogen-bonding molecular liquids, polymers, and nanoporous systems. These results lead to the conclusion that the primary alpha process of fructose-water mixtures results from the cooperative motion of water and fructose molecules, and the secondary beta process is the Johari-Goldstein process of water in the mixture. At temperatures near and above T(g) where both the alpha and the beta processes were observed and their relaxation times, tau(alpha) and tau(beta), were determined in some mixtures, the ratio tau(alpha)/tau(beta) is in accord with that predicted by the coupling model. Fixing tau(alpha) at 100 s, the ratio tau(alpha)/tau(beta) decreases with decreasing concentration of fructose in the mixtures. This trend is also consistent with that expected by the coupling model from the decrease of the intermolecular coupling parameter upon decreasing fructose concentration.  相似文献   

13.
Broadband dielectric measurements were carried out at isobaric and isothermal conditions up to 1.75 GPa for reconsidering the relaxation dynamics of decahydroisoquinoline, previously investigated by Richert et al. [R. Richert, K. Duvvuri, and L.-T. Duong, J. Chem. Phys. 118, 1828 (2003)] at atmospheric pressure. The relaxation time of the intense secondary relaxation tau(beta) seems to be insensitive to applied pressure, contrary to the alpha-relaxation times tau(alpha). Moreover, the separation of the alpha- and beta-relaxation times lacks correlation between shapes of the alpha-process and beta-relaxation times, predicted by the coupling model [see for example, K. L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)], suggesting that the beta process is not a true Johari-Goldstein (JG) relaxation. From the other side, by performing measurements under favorable conditions, we are able to reveal a new secondary relaxation process, otherwise suppressed by the intense beta process, and to determine the temperature dependence of its relaxation times, which is in agreement with that of the JG relaxation.  相似文献   

14.
The molecular mobility in amorphous trehalose is studied by thermally stimulated depolarisation currents (TSDC). The effect of aging on the sub-T(g) motional processes was analysed during annealing at a given aging temperature, some degrees below the calorimetric glass transition temperature T(g)=115 degrees C. The features of different motional components of the secondary relaxation are monitored as a function of time as the glass structurally relaxes on aging. The faster components of the secondary relaxation are negligibly dependent on aging and may be ascribed to intramolecular modes of motion, while the slower motional modes show a significant dependence on aging consisting of some kind of local motions with some intermolecular nature. The dielectric strength of this relaxation decreases with increasing aging time, and there is no evidence for any modification with aging of the relaxation time of this local mobility. The TSDC study of the molecular mobility of amorphous trehalose in the temperature region of the glass transformation provides the unexpected result that no glass transition signal is observable in this temperature region.  相似文献   

15.
The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ~500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II, for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.  相似文献   

16.
The molecular structure of bis-5-hydroxypentylphthalate (BHPP) is like dihexyl phthalate but having appended to it two hydroxyl end groups, which contribute additional dipole moments and capacity for hydrogen-bond formation. In a previously published dielectric study of the primary and secondary relaxations of BHPP, it was found that all the dynamic properties are normal except for the anomalously large width of the primary relaxation loss peak. There are two secondary relaxations, the relaxation time of the slower one increases with increasing pressure, whereas that of the faster one is practically insensitive to pressure. Hence, the slower secondary relaxation is the "universal" Johari-Goldstein (JG) [J. Chem. Phys. 53, 2372 (1970); 55, 4245 (1971)] relaxation in BHPP. All is well except if the observed large width of the primary relaxation were an indication of a corresponding large coupling parameter n=0.45 in the coupling model. Then the predicted relations between the primary relaxation time tau(alpha) and the JG relaxation time tau(JG) found previously to hold in many glass formers would be violated. It was recognized that this singular behavior of BHPP is likely due to broadening of the primary loss peak by the overlapping contributions of two independent dipole moments present in BHPP, and the actual coupling parameter is smaller. However, at the time of publication of the previous work there were not enough data to support this explanation. By making broadband dielectric measurements of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) that have chemical structures closely related to BHPP but with only one dipole moment, we show that all their dynamic properties are almost the same as BHPP but the widths of their primary relaxation loss peaks are significantly narrower corresponding to a smaller coupling parameter n=0.34. The new data presented here indicate that the coupling parameter of BHPP is about the same as DBP and DOP, and the predicted relations between tau(alpha) and tau(JG) of BHPP are brought back in agreement with the experimental data.  相似文献   

17.
The molecular mobility of amorphous ibuprofen has been investigated by broadband dielectric relaxation spectroscopy (DRS) covering a temperature range of more than 200 K. Four different relaxation processes, labeled as alpha, beta, gamma, and D, were detected and characterized, and a complete relaxation map was given for the first time. The gamma-process has activation energy E a = 31 kJ.mol (-1), typical for local mobility. The weak beta-relaxation, observed in the glassy state as well as in the supercooled state was identified as the genuine Johari-Goldstein process. The temperature dependence of the relaxation time of the alpha-process (dynamic glass transition) does not obey a single VFTH law. Instead two VFTH regimes are observed separated by a crossover temperature, T B = 265 K. From the low temperature VFTH regime, a T g (diel) (tau =100 s) = 226 K was estimated, and a fragility or steepness index m = 93, was calculated showing that ibuprofen is a fragile glass former. The D-process has a Debye-like relaxation function but the temperature dependence of relaxation time also follows the VFTH behavior, with a Vogel temperature and a pre-exponential factor which seem to indicate that its dynamics is governed by the alpha-process. It has similar features as the Debye-type process observed in a variety of associating liquids, related to hydrogen bonding dynamics. The strong tendency of ibuprofen to form hydrogen bonded aggregates such as dimers and trimers either cyclic or linear which seems to control in particular the molecular mobility of ibuprofen was confirmed by IR spectroscopy, electrospray ionization mass spectrometry, and MD simulations.  相似文献   

18.
Dynamic properties, derived from dielectric relaxation spectra of glass-formers at variable temperature and pressure, are used to characterize and classify any resolved or unresolved secondary relaxation based on their different behaviors. The dynamic properties of the secondary relaxation used include: (1) the pressure and temperature dependences; (2) the separation between its relaxation time taubeta and the primary relaxation time taualpha at any chosen taualpha; (3) whether taubeta is approximately equal to the independent (primitive) relaxation time tau0 of the coupling model; (4) whether both taubeta and tau0 have the same pressure and temperature dependences; (5) whether it is responsible for the "excess wing" of the primary relaxation observed in some glass-formers; (6) how the excess wing changes on aging, blending with another miscible glass-former, or increasing the molecular weight of the glass-former; (7) the change of temperature dependence of its dielectric strength Deltaepsilonbeta and taubeta across the glass transition temperature Tg; (8) the changes of Deltaepsilonbeta and taubeta with aging below Tg; (9) whether it arises in a glass-former composed of totally rigid molecules without any internal degree of freedom; (10) whether only a part of the molecule is involved; and (11) whether it tends to merge with the alpha-relaxation at temperatures above Tg. After the secondary relaxations in many glass-formers have been characterized and classified, we identify the class of secondary relaxations that bears a strong connection or correlation to the primary relaxation in all the dynamic properties. Secondary relaxations found in rigid molecular glass-formers belong to this class. The secondary relaxations in this class play the important role as a precursor or local step of the primary relaxation, and we propose that only they should be called the Johari-Goldstein beta-relaxation.  相似文献   

19.
Dielectric relaxation measurements of a typical small molecular glassformer, dipropyleneglycol dibenzoate show the presence of two secondary relaxations. Their dynamic properties differ in the equilibrium liquid and glassy states, as well as the changes during structural recovery after rapid quenching the liquid to form a glass. These differences enable us to identify the slower secondary relaxation as the genuine Johari-Goldstein (JG) beta-relaxation, acting as the precursor of the primary alpha-relaxation. Agreement between the JG beta-relaxation time and the independent relaxation time of the coupling model leads to predicted quantitative relations between the JG beta-relaxation and the alpha-relaxation that are supported by the experimental data.  相似文献   

20.
The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found between the Johari-Goldstein β-relaxation and the structural α-relaxation in non-ionic glass-forming systems. The novel features of the ionic conductivity relaxation are brought out by presenting the measurements in terms of the electric modulus or permittivity. If presented in terms of conductivity, the novel features are lost. This warns against insisting that a log-log plot of conductivity vs. frequency is optimal to reveal and interpret the dynamics of ionic conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号