首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energetic stability, atomic and electronic structures of α-graphyne and its derivatives (α-GYs) with extended carbon chains were investigated by density functional (DF) calculations in this work. The studied α-GYs consist of hexagon carbon rings sharing their edges with carbon atoms N=1–10. The structure and energy analyses show that α-GYs with even-numbered carbon chains have alternating single and triple C–C bonds (polyyne), energetically more stable than those with odd-numbered carbon chains possessing continuous double C–C bonds (polycumulene). The calculated electronic structures indicate that α-GYs can be either metallic (odd N) or semiconductive (even N) depending on the parity of number of atoms on hexagon edges despite the edge length. The semiconducting α-graphyne derivatives are found to possess Dirac cones (DC) with small direct band gaps 2–40 meV and large electron velocities 0.554×106–0.671×106 m/s, 70–80% of that of graphene. Our DF studies suggest that introducing sp carbon atoms into the hexagon edges of graphene opens up an avenue to switch between metallic and DC electronic structures via tuning the parity of the number of hexagon edge atoms.  相似文献   

2.
The spin transport signals from NiFe and Co into two-dimensional electron gas layers are measured for various thicknesses of transmission barriers. A stable and reproducible electrical detection of spin transport was obtained only when the barrier thickness is less than 10 nm. The typical interface resistance to observe spin signals in this experiment is about 0.5–250 Ω, which is a neither transparent nor a severe tunneling limit. The optimal interface resistance depends on the ferromagnetic materials, but severe tunneling barrier is not proper for fully electrical spin transport. Device size is also a critical factor to decide the proper range of interface resistance.  相似文献   

3.
The structural, elastic, electronic, optical and thermal properties of α phase in LiBeN semiconductor have been studied using pseudo-potential plane wave method based on the density functional theory. The computed lattice parameter agrees well with previous theoretical work. The elastic constants and their pressure dependence are predicted using the static finite strain technique. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature are numerically estimated in the frame work of the Voigt–Reuss–Hill approximation for α-LiBeN polycrystalline aggregate. The assignments of the structures in the optical spectra and band structure transitions have been examined and discussed. The thermal effect on heat capacities is investigated by the quasi-harmonic Debye model. To the best of our knowledge, most of the studied properties of the material of interest are reported for the first time.  相似文献   

4.
Ab initio calculations of electronic structure of anatase TiO2   总被引:3,自引:0,他引:3       下载免费PDF全文
陈强  曹红红 《中国物理》2004,13(12):2121-2125
This paper presents the results of the self-consistent calculations on the electronic structure of anatase phase of TiO2. The calculations were performed using the full potential-linearized augmented plane wave method (FP-LAPW)in the framework of the density functional theory (DFT) with the generalized gradient approximation (GGA). The fullyoptimized structure, obtained by minimizing the total energy and atomic forces, is in good agreement with experiment.We also calculated the band structure and the density of states. In particular, the calculated band structure prefers an indirect transition between valence and conduction bands of anatase TiO2, which may be helpful for clarifying theambiguity in other theoretical works.  相似文献   

5.
6.
We present a two-part systematic density functional theory study of the electronic structure of selected transition metal phthalocyanines. We use a semi-local generalized gradient approximation (GGA) functional, as well as several hybrid exchange-correlation functionals, and compare the results to experimental photoemission data. Here, we study the low-spin systems NiPc and CoPc. We show that hybrid functionals provide computed photoemission spectra in excellent agreement with experimental data, whereas the GGA functional fails qualitatively. This failure is primarily because of under-binding of localized orbitals due to self-interaction errors.  相似文献   

7.
Impurity induced disorder is a key feature of strongly doped semiconductor microstructures. We present a theoretical approach which allows the realistic and efficient calculation of localized quantum states in layered, delta-doped systems and the resulting properties of the quasi-2D multisubband electron/hole gas. The random Coulomb potential is directly computed from the impurity distribution without any simplifying assumptions. Electron-electron interaction is treated self-consistently on the Hartree level. The extreme cases of the doping superlattice (strong disorder) and the modulation doped quantum well (weak disorder) are studied as example device structures. Intersubband absorption spectra are then calculated for both types of systems and studied as a function of the electron filling factor. Striking differences are found between the linewidths of potential fluctuations and absorption spectra. These results are explained on the basis of system geometry, nonlinear screening and intersubband correlations. Finally, we discuss possible future applications and extensions of the method.  相似文献   

8.
In order to get more reliable electronic structures of proteins in aqueous solution, it is necessary to construct a potential of water molecules for protein’s electronic structure calculation. The lysine is a hydrophilic amino acid. It is positively charged (Lys+) in neutral water solution. The first-principles, all-electron, ab initio calcula-tions, based on the density functional theory, have been performed to construct such an equivalent potential of water molecules for lysine (Lys+). The process consists of three parts. First, the electronic structure of the cluster containing Lys+ and water molecules is calculated. By adjusting the positions of water molecules, the geometric structure of the cluster having minimum total energy is determined. Then, based on the structure, the electronic structure of Lys+ with the potential of water molecules is calculated using the self-consistent cluster-embedding (SCCE) method. Finally, the electronic structure of Lys+ with the potential of dipoles is calculated. The dipoles are adjusted so that the electronic structure of Lys+ with the potential of dipoles is close to that of water molecules. Thus the equivalent potential of water molecules for the electronic structure of lysine is obtained. The major effect of water molecules on lysine’s electronic structure is raising the occupied eigenvalues about 0.5032 eV, and broadening energy gap 89%. The effect of water molecules on the electronic structure of lysine can be simulated by dipoles potential.  相似文献   

9.
A theoretical model has been proposed for calculating the surface energy of nanowhiskers in the nearest neighbor approximation. The surface energy has been calculated for different faces of III–V semiconductor crystals with cubic and hexagonal structures. The effect of the formation of the hexagonal wurtzite phase in nanowhiskers of III–V semiconductor compounds has been considered using the obtained data. Estimates for the critical radius of the phase transition in III–V semiconductor nanowhiskers are presented.  相似文献   

10.
We present a two-part systematic density functional theory (DFT) study of the electronic structure of selected transition metal phthalocyanines. We use a semi-local generalized gradient approximation (GGA) functional, as well as several hybrid exchange-correlation functionals, and compare the results to experimental photoemission data. Here, we study the intermediate spin systems MnPc and FePc. We show that DFT calculations of these systems are extremely sensitive to the choice of functional and basis set with respect to the obtained electronic configuration and to symmetry breaking. Interestingly, all simulated spectra are in good agreement with experiment despite the differences in the underlying electronic configurations.  相似文献   

11.
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.  相似文献   

12.
By angle-resolved photoemission the electronic structure of quantum films of Mg, Ag, and Au has been compared on W(110) and Mo(110) substrates which are structurally and electronically very similar but differ in atomic number. In all cases, substrate-induced states with characteristic dispersions are observed in the region of a bulk band gap of the substrate. Based on the comparison between Mo and W, we can exclude that previously observed Mg states are spin-orbit split but observe a spin-orbit splitting in Ag and Au monolayers. This splitting is mainly caused by the substrate because it does not differ much between Ag and Au overlayers despite the large difference in atomic number.  相似文献   

13.
14.
The electronic structures of the title complexes—VO(acen) and VS(acen)—and the free H2(acen) ligand are probed using gas-phase UV-photoelectron spectroscopy [acen = N,N′-ethylenebis(acetylacetonylideiminato)]. The effect of the different axial donors on the metal center is examined, as is the effect that the oxo and thio ligands have on the acen orbitals. We find that the oxo and thio donors primarily affect the metal center and that the ligand periphery remains mostly unchanged.  相似文献   

15.
Structural and electronic properties of bimetallic silver–gold clusters up to eight atoms are investigated by the density functional theory using Wu and Cohen generalized gradient approximation functional. By substitution of Ag and Au atoms, in the optimized lowest energy structures of pure gold and silver clusters, we determine the ground state conformations of the bimetallic silver–gold ones. We reveal that Ag atoms prefer internal positions whereas Au atoms prefer exposed ones favoring charge transfer from Ag to Au atoms. For each size and composition, binding energy, HOMO–LUMO gap, magnetic moment, vertical ionization potential, electron affinity and chemical hardness were calculated. On increasing the size of the cluster by varying number of Ag atoms with fixed number of Au ones, vertical ionization potential and electron affinity show obvious odd–even oscillations consistent with the pure Ag and Au clusters. Au atoms inclusion in the cluster increases the binding energy and vertical ionization potential, indicating higher stability as the number of Au atoms grows. The variation of chemical hardness with the composition in a cluster with the same size shows peaks when the number of Ag atoms is greater than or equal to Au ones, corresponding to transition from planar to tri-dimensional structures. For clusters with even number of atoms, the peaks indicate that the clusters with the same number of Ag and Au atoms are the most stable ones. Analyzing the density of states, we found that increasing the concentration of Ag atoms affects the energy separation between the HOMO and the low lying occupied states.  相似文献   

16.
Photoelectron spectra and optical absorption spectra for clean surfaces of quasicrystalline samples of the Ti—Zr—Ni system are measured. The resonant photoelectron spectra are also measured in the range of photon energies corresponding to Ni 2p and Zr 3d absorption thresholds. The change in the intensities of the spectrum of the valence band near the Zr 3d threshold is insignificant. The emission of Auger electrons increases near the Ni 2p threshold in a resonance way. Our studies make it possible to reveal certain specific features of the electronic structure of quasicrystals, which can be used to construct models of actual electronic structures of quasi-crystalline materials.  相似文献   

17.
We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ε-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.  相似文献   

18.
We discuss an application of the generalized augmented space method introduced by one of us combined with the recursion method of Haydock et al (GASR) to the study of electronic structure and optical properties of random binary alloys. As an example, we have taken the 50-50 CuZn alloy, where neutron scattering indicates the existence of short-range order.   相似文献   

19.
赵龙  芦鹏飞  俞重远  马世甲  丁路  刘建涛 《中国物理 B》2012,21(9):97103-097103
The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory. By investigating five geometrical configurations, we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour, and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping. We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states, which is strong enough to lead to hole-mediated ferromagnetism at room temperature. Meanwhile, we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (T C = 5475 K). These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.  相似文献   

20.
Using a tight binding formalism the wave vector resolved electronic density of states has been calculated in the coherent potential approximation for an 1 T–TiSe2 crystal containing Frenkel defects. Additional structure originating from disorder is discussed. An extra peak in the A direction at 1.5 eV binding energy can be traced back to a resonance caused by titanium vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号