首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reversible formation of binuclear species between M(OH2) 6 2+ (M = NiII and CoII) and oxygen-bonded (tetren)Co(pycH)3+ (tetren = tetraethylenepentamine, pycH = N-protonated pyridine-2-carboxylate) have been investigated by stopped-flow spectrophotometry at 25°C, I = 0.3 mol dm-3. Both the protonated (pyridine-N) and deprotonated forms of the CoIII complex were involved in the formation of the binuclear complex (tetren)Co(pyc)Co4+, whereas only the deprotonated form of the complex was involved in the formation of (tetren)Co(pyc)Ni4+. The rate date forthe formation of the binuclear complex are consistent with an Id mechanism. Interestingly, the dissociation of the binuclear CoII complex (tetren)Co(pyc)Co4+ was acid-catalysed while that with NiII was acid-independent. A suitable explanation for this anomalous behaviour has been discussed.  相似文献   

2.
The absorption spectra of the complex ions [Co(H2O)6]2+ and [Co(NH3)6]2+ in solution have been studied. The spectra were analyzed after breakdown of the bands into their Gaussian components by means of the formalism of a crystal field with irregular octahedral symmetry. It has been shown that interpretation of the spectra is possible only with allowance for spin-orbital coupling and orthorhombic distortion. The results obtained differ significantly from the published data.  相似文献   

3.
59Co- and 1H-NMR. spectra as well as preparative work have shown that oxygenation of solutions of triethylenetetramine cobalt(II) leads to a mixture of isomeric forms of [Co2(trien)2μ (O2, OH)]3+. Using a new preparative method, starting from mononuclear cobalt(III)-chelates, a binuclear μ-peroxo-cobalt(III) complex has been obtained in two different forms, where the chelate configuration is predominantly either α-cis or β-cis in both centres. The two configurations can be distinguished by IR. spectroscopy.  相似文献   

4.

The title complex [K{Cu(acen)}3]2[Co(NCS)4]·1/4CH3OH (acen = acetylacetonethylenediamine anion) has been prepared and characterized. Single-crystal x-ray analysis reveals that the complex crystallizes in space group P I with a = 11.442(2), b = 15.098(3), c = 28.500(4) Å, α = 82.77(1), β = 83.58(1), γ = 85.07(1)°. The crystal consists of the complex [K{Cu(acen)}3]+ cations, [Co(NCS)4]2? anions and methanol molecules. Three [Cu(acen)] molecules function as bridging ligands through phenolic O atoms to one K+ to give the tetranuclear [K{Cu(acen)}3]+ cation. Each copper(II) atom in the cation is in a square-planar geometry, being coordinated by two oxygen atoms and two nitrogen atoms from a quadridentate acen ligand. The cobalt(II) atom is coordinated by four nitrogen atoms of thiocyanate ligands, forming a deformed tetrahedral environment. The IR and UV-Vis spectra have also been investigated.  相似文献   

5.
The preparation of trans-[Co(NH3)4(CH3NH2)Br]2+ and trans-[Co(NH3)4(CH3NH2)-(NO3)]2+ complexes is described. The UV-VIS spectra of the complexes indicate a decrease of the ligand field compared to the parent pentaammines. Infrared spectra match with the pattern of the corresponding pentaammines. The catalyzed (by Hg2+) aquation of the trans-bromomethylamine complex go under retention of the stereochemical configuration. The base hydrolysis (studied at 25°C) products show trans to cis rearrangement for both complexes. 1H NMR spectroscopy is used for identification of the stereochemical configuration of the compounds.  相似文献   

6.
Photolysis of Mixed-Ligand Cobalt(II1) Complexes with α-Aminoacids, Ethylenediamine, and 2,2′-Bipyridyl. Elimination of Ligand Fragments A new organo-cobalt(III) complex, [Co(bipy)22-CH2NH2)]2+, have been obtained from UV-irradiated aqueous solutions of [Co(gly)2bipy]+, [Co(bipy)2gly]2+, [Co(bipy)(en)gly]2+, and [Co(en)2bipy]3+ by ion-exchange chromatography and characterized both analytically and by IR, NMR, and UV/VIS spectra. The formation of the same product in all cases with the η2-aminomethyl ligand is explained by photoinduced elimination of the ligand fragments (CO2 from the glycinato or CH2NH2+ from the ethylenediamine ligand) and subsequent ligand exchange reactions which are catalyzed by CoII species. Similar photolysis products of sarcosinato or valinato complexes were found to be less stable, and hence they could be observed only at low temperatures.  相似文献   

7.
The N-bonded nitrile complexes -[Co(tetren)NCR]3+ (R=Me, Ph, p-MeOC6 H4) have been prepared by the reaction of -[Co(tetren)OH2]3+ with the corresponding nitrile. The kinetics of base hydrolysis have been studied by pH-stat methods. The reactions involve an SN1CB displacement of the nitrile to give the hydroxopentamine; nucleophilic attack at the nitrile carbon to give the corresponding carboxamido complex does not occur. NaN3 reacts with the nitrile complexes in slightly acidic solution (pH ca. 5.7) to give the tetrazolato complexes [Co(tetren)N4 R]2+ (R=Me, Ph) which have been characterised. The reaction of azide ion with -[Co(tetren)NCMe]3+ has been studied kinetically. The reaction is biphasic involving the initial rapid formation of the N1-bonded (5-methyltetrazolato) pentaminecobalt(III) complex with k=2×10–2dm3 mol–1s–1 at 25°C followed by the slow isomerisation to the N2-bonded complex with k=3.5×10–5s–1 at pH 5.7.  相似文献   

8.
On Reactions of oxygenated Cobalt(II) Complexes. V. Reactivity of diastereoisomeric μ-peroxo-μ-hydroxo-dicobalt(III) Ions The kinetics of dissociation of μ-peroxo-μ-hydroxo-dicobalt(III) chelates have been reinvestigated using a stopped flow technique. The binuclear cations [(trien)Co(O2, OH) Co(trien)]3+, [(tren)Co(O2, OH)Co(tren)]3+ and [(en)2Co(O2, OH)Co(en)2]3+ dissociate on acidifying to Co2+ and the protonated ligand and up to 100% of the bound O2 is evolved. The dissociation is H+-catalyzed and first order in complex. The observed rate constants at pH 2 are in the range of 10?3 to 10?1 s?1 (20°). They depend not only on the nature of the ligand and on ligand configuration but also on the diastereoisomeric structure of the binuclear cation. In the case of trien there are 8 possible chemically different isomers. On oxygenation of Co(trien)2+ in dilute solution 3 of those isomers seem to be formed preferentially. Their rate constants are separated over a factor of 50. For [(en)2 Co(O2, OH)Co(en)2]3+ there exist a meso form and a chiral structure. On oxygenation of Co(en)22+ in dilute solution the meso form and the racemate are formed to about equal amounts. The racemate dissociates about 5 times slower. Of the 3 possible achiral isomers of [(tren)Co(O2, OH)Co(tren)]3+ one is formed stereoselectively by oxygenation in solution.  相似文献   

9.
The synthesis of two new polyamines containing 2-pyridyl and 6-methyl-(2-pyridyl) groups is described. The equilibria between H+ and Co2+ and the new ligand 1,9-di(2-pyridyl)-2,5,8-triazanonane (dptn) as well as the protonation of the hydroxo complexes of 1,6-di(2-pyridyl)-2,5-diazahexane-Co(II) (Co(dpdh) and 1-(6-methyl-2-pyridyl-6-(2-pyridyl)-2,5-diazahexane-Co(II) (Co(mdpdh)) have been studied in aqueous solution using the pH method. The coordination ability of the pyridine containing ligand dptn is compared with the chelating tendency of the analogous aliphatic amine (tetren). In spite of the lower basicity of the pyridine derivative the stability constants of its Co(II) complex is higher by a factor of thirty. The absorption spectra give evidence for a pseudooctahedral geometry of Co(dpdh) (H2O) and Co(dpdh)(H2O)(OH)+. Oxygen-uptake measurements indicate the formation of binuclear peroxo species. The potentiometric equilibrium data indicate the presence of dibridged species (dpdh)Co(O2, OH)Co(dpdh)3+ and (mdpdh)Co(O2, OH)Co-(mdpdh)3+. The kinetics of the rapid O2-uptake was measured over a wide pH range on a stopped-flow apparatus. For Co(dpdh)2+ and Co(mdpdh)2+ we found a second order rate constant independent of pH up to pH 9, but in more alkaline solutions it increases and reaches an upper limit around pH 12.3. The data could be fitted by a rate law of the form k1 = (k1[H+] + k1 KH) ([H+] + KH)?1. This variation with pH was explained by a rapid equilibrium Co(dpdh) (H2O) ? Co(dpdh)(H2O)(OH)+ + H+(KH). The enhanced rate constants of the hydroxo species must arise from a rate determining H2O replacement by O2, dominated by Co-OH2 bond breaking and the expected ability of an OH? group to labilize neighboring H2O molecules. The protonation constant of the hydroxo complex obtained by equilibrium measurements (pKH = 11.19 ± 0.03) was in good agreement with that derived from kinetic data (11.12 ± 0.04). The hydrolysis of Co(dptn)(H2O)2+ influences the rate of O2-incorporation in a different way. In this system retardation occurs as a result of hydrolysis ascribed to the slower leaving of OH? compared to H2O. This was expected if a mechanism with rate determining H2O replacements by O2 holds.  相似文献   

10.
On Reactions of oxygenated Cobalt(II) Chelates. VI. Preparation of diastereoisomeric tetrakis(ethylenediamine)-μ-peroxo-μl-hydroxo-dicobalt(III) Perchlorates Oxygenation of Co(en)22+ leads to a mixture of two isomeric forms of [(en)2Co(O2, OH)-Co(en)2] (ClO4)3 · H2O from which the less soluble meso form can be readily crystallized. Further crystallization from the mother liquor yields the racemate ΔΔ/ΔΔ. The pure racemate may be obtained by either of the following methods: (a) By ligand exchange starting from mono bridged [(NH3)5CoO2Co(NH3)5] (NO3)4 or from doubly bridged [(SCN) (NH3)3Co(O2, OH)Co(NH3)3(SCN)] SCN · 2H2O. (b) By reaction of cis-[Co(en)2(OH2)2]3+ with H2O2. Reaction (b) proceeds via an intermediate cis-[Co(en)2(OOH) (OH2)] (ClO4)2 · H2O which at higher pH reacts with [Co(en)2(OH) (OH2)]2+ to yield the desired doubly bridged ΔΔ/ΔΔ tetrakis(ethylenediamine)-μ-peroxo-μ-hydroxodikobalt(III)-perchlorate.  相似文献   

11.
Summary The reaction of a warm ethanolic solution of CoII perchlorate or rodanide and NiII acetate with 2-furaldehydeS-methylisothiosemicarbazone (HL), yielded the complexes [Co(HL)2(H2O)](ClO4)2 (1), [Co(HL)3] [Co(NCS)4] (2) and NiL2, respectively. Both CoII complexes are high-spin, whereas the NiII complex is in lowspin state (diamagnetic). An x-ray analysis of (1) showed it to have atrans-trigonal bipyramidal configuration in which one coordination site in the equatorial plane is occupied by one H2O molecule. HL, a bidentate ligand, is coordinatedvia N(1) and N(4). The tris(ligand) cation in complex (2) has an octahedral configuration. Complex NiL2 has a square-planar configuration.The deep purple plate-like crystals of (1) are monoclinic with space group C2/c, having cell parameters:a=11.369(3),b=13.029(4),c=17.438(5) Å; =103.39(2)o. The structure was solved by the heavy-atom method and refined by least-squares method to an R value of 0.060 for 1761 observed reflections.  相似文献   

12.
The stoichiometric reaction of copper(II) hydroxycarbonate, iminodiacetic acid (H2IDA = HN(CH2CO2H)2) and α‐picolinamide (pya) in water yields crystalline samples of (α‐picolinamide)(iminodiacetato)copper(II) dihydrate, [Cu(IDA)(pya)] · 2 H2O ( 1 ). The compound was characterised by thermal (TG analysis with FT‐IR study of the evolved gasses), spectral (IR, electronic and ESR spectra), magnetic and single crystal X‐ray diffraction methods. It crystallises in the triclinic system, space group P1, a = 8.8737(4), b = 10.23203(5), c = 15.7167(11) Å, α = 77.61(1)°, β = 103.89(1)°, γ = 80.32(1)°, Z = 4, final R1 = 0.056. The asymmetric unit contains two crystallographic independent molecules but chemically very similar ones. The CuII atom exhibits a square base pyramidal coordination (type 4 + 1). pya acts as N,O‐bidentate ligand supplying two among the four closest donor atoms of the metal [averaged bond distances (Å): Cu–N = 1.982(2), Cu–O(amide) = 1.972(2)]. IDA plays a N,O,O′‐terdentate chelating role [averaged bond distances (Å): Cu–N = 2.004(3), Cu–O = 1.941(2) and Cu–O = 2.242(2)]. The coordinating behaviour of pya in 1 is discussed on the basis of its N,O‐bidentate chelating role and the preference of the ‘Cu‐iminodiacetato' moiety [Cu(IDA)] to link the N‐heterocyclic donor of pya in trans versus the Cu–N(IDA) bond. Consistently the ligand pya is able to impose a fac‐chelating configuration to IDA one around the copper(II) as previously has been reported to mixed‐ligand complexes having a 1/1/2 CuII/IDA/N(heterocyclic) donor ratio or a closely related 1/1/1/1 CuII/IDA/N(heterocyclic)/N(aliphatic) one.  相似文献   

13.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

14.
On the Reaction of Macrocycles with Lanthanoids. II. The Crystal Structures of [K(thf)3]2[(C22H28N4)2Sm2] · 4 THF and [(C22H22N4)Co] · DME In a complicated redox reaction [(TMTAA)K2] and [SmI2(thf)2] form the polynuclear metal complex [K(thf)3]2[(TMTAT)2Sm2]. This complex crystallizes with four molecules THF per formula unit and its structure was determined by single crystal X-ray investigation (spacegroup P21/c (No. 14), z = 4, a = 998.0(2) pm, = b = 2618.3(6) pm, c = 1619.4(3) pm, β = 96.52(2)°). In the dimeric unit [(TMTAT)2Sm2]2? the Sm3+ ions are bonded to the four N atoms of the macrocyclic ligand and one C6H4 ring of the second ligand is attached η6 like to one metal ion. Additionally two [K(thf)3]+ fragments are bonded to this central unit, and therefor coordination number seven results for the K+ ion. [TMTAA]2? is not reduced by [Cp2Co] in a similar reaction. The monomeric paramagnetic complex [(TMTAA)Co] (μeff = 2,76 μB) is formed instead. The structure reveils a square planar coordination of the Co atom by the four N atoms of the TMTAA ligand (spacegroup C2/c (No. 15), z = 4, a = 1945.1(4) pm, b = 1165.6(2) pm, c = 1144.7(2) pm, β = 116.38(1)°).  相似文献   

15.
A new 7,16‐bis(quinolin‐8‐ylmethyl)‐1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane ligand, L, has been prepared and its crystal structure reported. In addition, the structure of the protonated ligand H2L has been determined. H2L is of interest because of interatomic interactions between the ligand and perchlorate ions. The mononuclear Ba(II) (Ba L ), and dinuclear Cu(II) (Cu2L) complexes of L have been prepared and their crystal structures determined. Stability constants and other thermodynamic data valid in methanol at 23 or 25° for these and several other complexes of L have been obtained. Among the metal ions studied, L forms the most stable complex with Ba2+. In addition, L selectively binds Cu2+ over Ni2+ by about 3 orders of magnitude. Some of the complexes have been studied using nmr and uv‐vis spectroscopic techniques. Crystal data are given for L, space group, P21c, a = 8.8325(14) Å, b = 13.808(3) Å, c = 13.310(3) Å; β = 94.72(2)° Z=2, R = 0.0727; for H2 L , space group, P21/c, a = 14.685(3) Å, b = 15.035(6) Å, c = 17.369(4) Å, β = 90.366(12)°, Z = 4, R = 0.0781; for Ba L , space group, Pbcn, a = 17.314(3) Å, b = 9.539(2) Å, c = 22.081(3) Å, Z = 4, R = 0.0354; and for Cu2 L , space group, Cc, a = 19.762(2) Å, b = 14.413(2) Å, c = 14.935(2) Å, β = 98.753(12)°, Z = 4, R = 0.0564. Cu2+ forms a hydroxo‐bridged dinuclear complex with L while Ba2+ forms a mononuclear complex with L in which its two side arms are not involved in complexation.  相似文献   

16.
The binuclear molybdenum(II) anion [Mo2Cl8]4? acts as a template for the self-condensation of 2-aminobenzaldehyde. The dimolybdenum unit is retained in the molybdenum(IV) product, [Mo2(A)2(H2O)4+.4Cl?, where A is a macrocyclic tetradentate ligand containing two Schiff base nitrogen donors. The product forms as two isomers, whose 1H nmr spectra are discussed.  相似文献   

17.
The complex Co(C14H13NO)2Cl2 with the protonated N‐salicylidene‐p‐toluidine ligand was synthesized from an ethanolic solution of CoCl2·6H2O and N‐salicylidene‐p‐toluidine. The crystal structure was determined from X‐ray single crystal data (monoclinic, space group Cc, a = 1496.2(3) pm, b = 1257.4(4) pm, c = 1544.6(3) pm, β = 115.01(1)°, Z = 4). Co2+ adopts a distorted tetrahedral geometry. The UV‐Vis and IR spectra of the complex are discussed.  相似文献   

18.
Summary Metal(II) bis-chelates of the type ML2nB [M=CoII, NiII, and CuII, L=1-hydroxy-2-naphthyl(4-X-styryl)ketone, (X=H, Me, Cl, MeO), B=H2O, Py; n=0, 2] have been prepared and characterised by element analyses, i.r., ligand field spectra, magnetic moments and thermal studies. The copper(II) chelates are anhydrous monomers oftrans-square-planar configuration. The cobalt(II) and nickel(II) chelates, obtained as dihydrates, possess a high-spintrans-octahedral structure. Their anhydrides are polymeric. All the pyridine adducts have high-spintrans-octahedral geometry. The (M–O), order, namely Cu >Ni>Co, parallels the Irving-Williams order. The weak ligand field strength of 1-hydroxy-2-naphthyl(4-X-styryl)ketones is ascribed to inhibition of extensive conjugation arising from deviation of the naphthoyl group from planarity.  相似文献   

19.
Summary Cobalt(II) complexes of creatinine [Co(creat)2X2] (X = Cl, Br, I or NCS) and [Co(creat)2X2(H2O)2] (X = HCO2, HOCH2CO2 or CNCH2CO2) have been prepared. Their i.r. spectra show an increase in (NH) of the cyclic secondary amine group, compared to free ligand (3300 cm–1), indicating that cyclic nitrogen is involved in coordination. The thiocyanate group coordinates through nitrogen and carboxylates coordinate as univalent unidentate ligands. The electronic spectra and magnetic moments suggest a d7 configuration for cobalt: a tetrahedral geometry (4.4 B.M.) for halide and thiocyanate complexes, and an octahedral geometry (5.0 B.M.) for the carboxylate complexes. On heating, the ligand moiety is lost and the respective cobalt halide or cobalt carboxylate is formed, which is converted finally into Co3O4. There is a correlation between the high intensity electronic transitions and the polarographic half-wave potentials.  相似文献   

20.
J. Ribas  C. Diaz  J. Casabó 《Polyhedron》1984,3(3):357-362
This article describes some complexes of Cu(II) and Co(II with NN′-bis-8-quinolylethylenediamine ligand (nn′). All the compounds are of stoichiometry [MX2(nn′)] (M = Cu or Co; X = Cl?, Br?, I?, NO?3 or SCN?). The electronic spectra are consistent with distorted octahedral geometry around the ions, indicating the four coordination of the nn′ ligand. Magnetic susceptibility measurements down to 100 K show antiferromagnetic interactions in all the Cu(II) compounds demonstrating the existence of the ionic and bridging X group. Infrared spectra show the presence of ionic and bridging nitrate in the [M(NO3)2(nn′)] (M = Co or Cu) compounds and ionic and bridging NCS group in the [Cu(NCS)2(nn′)] compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号