首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The sticking probability of H2 on Si(001) is immeasurably small at room temperature, indicating the presence of a large energy barrier to adsorption. Surprisingly, the final state energy distributions of H2 molecules desorbing from Si(001) show no signs of having traversed such a barrier, in apparent contradiction with microscopic reversibility. Here we report experimental and theoretical evidence resolving this long-standing puzzle. Adsorption and desorption proceeding along two distinct, microscopically reversible pathways can explain all observations.  相似文献   

8.
9.
An electron beam (EB) irradiation effect on the Si(001)-c(4 x 2) surface was investigated by using low-energy electron diffraction. Quarter-order spots become dim and streaky by EB irradiation below approximately 40 K, indicating a disordering in the c(4 x 2) arrangement of buckled dimers. A quantitative analysis of decreasing rates of the spot intensity at various conditions of beam current, beam energy, and substrate temperature leads to a proposal for a mechanism of the disordering in the buckled-dimer arrangement in terms of electronic excitation, electron-phonon coupling, and carrier concentration.  相似文献   

10.
11.
The InP(001)(2 x 1) surface has been reported to consist of a semiconducting monolayer of buckled phosphorus dimers. This apparent violation of the electron counting principle was explained by effects of strong electron correlation. Combining first-principles calculations with reflectance anisotropy spectroscopy and LEED experiments, we find that the (2 x 1) reconstruction is not at all a clean surface: it is induced by hydrogen adsorbed in an alternating sequence on the buckled P dimers. Thus, the microscopic structure of the InP growth plane relevant to standard gas phase epitaxy conditions is resolved and shown to obey the electron counting rule.  相似文献   

12.
13.
14.
The C amount and the structure of the Si(001)-c(4 x 4) surface is studied using scanning tunneling microscopy (STM) and ab initio calculations. The c(4 x 4) phase is found to contain 1/8 monolayer C (1 C atom in each primitive unit cell). From the C amount and the symmetry of high-resolution STM images, it is inferred that the C atoms substitute the fourth-layer site below the dimer row. We construct a structure model relying on ab initio energetics and STM simulations. Each C atom induces an on-site dimer vacancy and two adjacent rotated dimers on the same dimer row. The c(4 x 4) phase constitutes the subsurface Si(0.875)C(0.125) delta layer with two-dimensionally ordered C atoms.  相似文献   

15.
16.
17.
18.
19.
20.
We examine the thermal decomposition of an ultrathin Si oxide layer around a Si(001)-(2 x 1) window opened by electron-beam-induced selective thermal decomposition. The decomposition progresses at the oxide/Si(001)-(2 x 1) boundary and follows two rate-limiting steps with activation energies of 4.0 and 1.7 eV. We propose that the former and latter energies correspond to the reaction of Si monomer with the oxide and the desorption of the SiO into the vacuum, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号