首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capillary electrokinetics method (measurements of streaming potential and current in original and hydrophobized fused quartz capillaries with radii of 5–7 μm) is employed to study the formation of adsorption layers upon contact with solutions containing a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). It is shown that polyelectrolyte adsorption causes the charge reversal of both hydrophilic and hydrophobic surfaces, with a smaller amount of the substance being adsorbed on the hydrophobic than on the hydrophilic surface. The adsorption on both surfaces increases with the polymer solution concentration. The cationic polyelectrolyte adsorption on the pure quartz surface occurs mainly due to the electrostatic attraction, while, in the case of the hydrophobic surface, the contribution of hydrophobic interactions increases. The study of the layer deformability shows that, on the hydrophilic surfaces, the layer ages and its structure depends on the polymer solution concentration. On the modified surface, the deformation of even freshly formed layers is slight, which suggests that a denser layer is formed on the hydrophobic surface. In contrast to the hydrophilic surface, the polyelectrolyte is partly desorbed from the hydrophobic surface.  相似文献   

2.
Water vapor adsorption and heats of water wetting are studied for hydrophilic quartz, hydrophobic-hydrophilic talc, and hydrophobized Silochrom samples. Water contact angles on the materials under examination are found. The surface thermodynamic parameters of the sorbents are calculated from the data obtained. It is shown that boundary water layers on hydrophilic quartz surface are ordered to a higher extent, while those on hydrophobic basal surfaces of talc particles and hydrophobic surfaces of modified Silochrom samples are ordered to a lower extent relative to liquid water. An empirical equation relating the surface pressure of water films adsorbed on hydrophilic high-energy surfaces with the surface free energy of the latter is proposed. The values of surface free energy are estimated from this equation for a number of important hydrophilic adsorbents.  相似文献   

3.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

4.
The hydrophobic and hydrophilic components of the surface of talc materials in aqueous solution were determined using ionic surfactants and their polar headgroup adsorption isotherms. The hydrophilic and hydrophobic surface areas are inferred from the amount of probe molecule adsorbed and the structure of the adsorbed layer. Natural dispersion of talc shows at 298 K a pH of 9.4 and the electrophoretic measurements indicate that the particles are negatively charged. The hydrophilic surface area is estimated from the adsorption of benzyltrimethylammonium ions (BTMA(+)) through electrostatic interactions as supported by the increase of divalent ions in the bulk phase and the decrease in the exothermic displacement enthalpy. It was also observed from the adsorption isotherm of benzene sulfonate anions that the density of positive surface sites is very low and is thus neglected. The adsorption of an anionic surfactant essentially occurs through dispersive interactions between the nonpolar organic tail of the molecule and the hydrophobic surface. Furthermore, some assumptions on the structure of dodecyl sulfate surfactant aggregates at the interface allow the hydrophobic part of the talc particles to be estimated. The cationic surfactant adsorption has been investigated and found to corroborate the hydrophilic and hydrophobic area values first obtained. Copyright 2001 Academic Press.  相似文献   

5.
The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m2) compared to the hydrophilic surface (1.40–1.50 mg/m2). The thickness of the adsorbed layer was constant (3.5 nm) on both surfaces at an adsorbed amount >1.0 mg/m2, but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.  相似文献   

6.
For the first time, large amount of Janus silica particles as small as 100 nm in diameter were prepared through a simple method based on the elaboration of Pickering emulsions of wax-in-water. Controlling the kinetic stabilization of wax droplets allows the fabrication of gram-sized quantities of regular asymmetric inorganic particles with high yield. In fact, our method is based on a limited coalescence process, which allows one to predict the quantity of interface which is produced when working with a known mass of wax, and thus to be sure that all introduced silica particles are adsorbed on the wax surface. To this end, the hydrophilic surface of the silica particles was made partially hydrophobic by adsorbing a known amount of surfactant: cetyltrimethylammonium bromide (CTAB). Varying the concentration in surfactant results in tuning the penetration rate of the particles in the wax droplets, leading to various dimension of the modified area. The broken spherical symmetry of the particle surface was thereafter revealed by the selective adsorption of gold nanoparticles on the amino-modified surface.  相似文献   

7.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

8.
The solid particles are adsorbed at liquid-liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with microstructured surfaces using the so-called Wenzel model [Y. Nonomura et al., J. Phys. Chem. B 110 (2006) 13124]. In the present study, the wettability and the adsorbed position of the particles with extremely rough surfaces are studied based on the Cassie-Baxter model. We predict that the adsorbed position and the interfacial energy depend on the interfacial tensions between the solid and liquid phases, the radius of the particle, and the fraction of the particle surface area that is in contact with the external liquid phase. Interestingly, the initial state of the system governs whether the particle is adsorbed at the interface or not. The shape of the particle is also an important factor which governs the adsorbed position. The disk-shaped particle and the spherical particle which is partially covered with the extremely rough surface, i.e. Janus particle, are adsorbed at the liquid-liquid interface in an oriented state. We should consider not only the interfacial tensions, but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

9.
The adsorption of amyloid beta-peptide at hydrophilic and hydrophobic modified silicon-liquid interfaces was characterized by neutron reflectometry. Distinct polymeric films were used to obtain noncharged (Formvar), negatively (sodium poly(styrene sulfonate)) and positively charged (poly(allylamine hydrochloride)) hydrophilic as well as hydrophobic surfaces (polystyrene and a polysiloxane-dodecanoic acid complex). Amyloid beta-peptide was found to adsorb at positively charged hydrophilic and hydrophobic surfaces, whereas no adsorbed layer was detected on hydrophilic noncharged and negatively charged films. The peptide adsorbed at the positively charged film as patches, which were dispersed on the surface, whereas a uniform layer was observed at hydrophobic surfaces. The thickness of the adsorbed peptide layer was estimated to be approximately 20 A. The peptide formed a tightly packed layer, which did not contain water. These studies provide information about the affinity of the amyloid beta-peptide to different substrates in aqueous solution and suggest that the amyloid fibril formation may be driven by interactions with surfaces.  相似文献   

10.
The influence of droplet orientation on the flow directed organization of nanoparticles in evaporating nanofluid droplets is important for the efficiency of foliar applied fertilizers and contamination adhesion to the exterior of buildings. The so called "coffee ring" deposit resulting from the evaporation of a sessile nanofluid drop on a hydrophilic surface has received much attention in the literature. Deposits forming on hydrophobic surfaces in the pendant drop position (i.e. hanging drop), which are of importance in foliar fertilizer and exterior building contamination, have received much less attention. In this study, the deposit patterns resulting from the evaporation of water droplets containing silica nanoparticles on hydrophobic surfaces orientated in the sessile or pendant configuration are compared. In the case of a sessile drop the well known coffee ring pattern surrounding a thin nanoparticle layer was formed. A deposit consisting of a thin coffee ring surrounding a bump was formed in the pendant position. A mechanism involving flow induced aggregation at the droplet waist, settling, orientation dependant accumulation within the drop and pinning of the contact line is suggested to explain the findings. Differences in the contact area and adhesion of deposits with surface orientation will affect the efficiency and rainfastness of foliar fertilizers and the cleanliness of building exteriors.  相似文献   

11.
Zhao Y  Cho SK 《Lab on a chip》2006,6(1):137-144
This paper describes a new microparticle sampler where particles can be efficiently swept from a solid surface and sampled into a liquid medium using moving droplets actuated by the electrowetting principle. We successfully demonstrate that super hydrophilic (2 microm and 7.9 microm diameter glass beads of about 14 degrees contact angle), intermediate hydrophilic (7.5 microm diameter polystyrene beads of about 70 degrees contact angle), and super hydrophobic (7.9 microm diameter Teflon-coated glass beads and 3 microm size PTFE particles of over 110 degrees contact angles) particles on a solid surface are picked up by electrowetting-actuated moving droplets. For the glass beads as well as the polystyrene beads, the sampling efficiencies are over 93%, in particular over 98% for the 7.9 microm glass beads. For the PTFE particles, however, the sampling efficiency is measured at around 70%, relatively lower than that of the glass and polystyrene beads. This is due mainly to the non-uniformity in particle size and the particle hydrophobicity. In this case, the collected particles staying (adsorbing) on the air-to-water interface hinder the droplet from advancing. This particle sampler requires an extremely small amount of liquid volume (about 500 nanoliters) and will thus be highly compatible and easily integrated with lab-on-a-chip systems for follow-up biological/chemical analyses.  相似文献   

12.
Starting from gold chips, we have tailor-made three surfaces by the self-assembly monolayer technique: one entirely hydrophobic, one hydrophobic with dispersed carboxyl groups, and one hydrophilic, containing hydroxyl groups. Rhizomucor miehei lipase has been adsorbed to the hydrophobic and the hydrophilic surfaces and covalently bound to the surface containing carboxyl groups. The adsorption of two substrates-capric acid (decanoic acid) and monocaprin-on the lipase-covered surfaces was monitored by the surface plasmon resonance (SPR) technique. Biocatalysis was also performed in the SPR instrument by circulating a solution of the substrate, dissolved in an 85:15 water-glycerol mixture at a(w) = 0.81, through the instrument, thus exposing the capric acid or the monocaprin to the lipase-covered surfaces. The product composition was found to depend on the type of surface used. Lipase adsorbed at the hydrophilic surface favored hydrolysis, and capric acid was the main product formed when monocaprin was used as substrate. Lipase adsorbed at a hydrophobic surface and, in particular, lipase covalently bound to a hydrophobic surface favored condensation. More dicaprin than capric acid was formed in experiments with monocaprin as the substrate. Reactions performed outside the SPR instrument showed that small amounts of triglyceride were also formed under these conditions. We believe that this work constitutes the first example of the SPR instrument being used for in-situ biotransformation.  相似文献   

13.
Infrared-visible sum frequency generation (SFG) vibrational spectroscopy, in combination with fluorescence microscopy, was employed to investigate the surface structure of lysozyme, fibrinogen, and bovine serum albumin (BSA) adsorbed on hydrophilic silica and hydrophobic polystyrene as a function of protein concentration. Fluorescence microscopy shows that the relative amounts of protein adsorbed on hydrophilic and hydrophobic surfaces increase in proportion with the concentration of protein solutions. For a given bulk protein concentration, a larger amount of protein is adsorbed on hydrophobic polystyrene surfaces compared to hydrophilic silica surfaces. While lysozyme molecules adsorbed on silica surfaces yield relatively similar SFG spectra, regardless of the surface concentration, SFG spectra of fibrinogen and BSA adsorbed on silica surfaces exhibit concentration-dependent signal intensities and peak shapes. Quantitative SFG data analysis reveals that methyl groups in lysozyme adsorbed on hydrophilic surfaces show a concentration-independent orientation. However, methyl groups in BSA and fibrinogen become less tilted with respect to the surface normal with increasing protein concentration at the surface. On hydrophobic polystyrene surfaces, all proteins yield similar SFG spectra, which are different from those on hydrophilic surfaces. Although more protein molecules are present on hydrophobic surfaces, lower SFG signal intensity is observed, indicating that methyl groups in adsorbed proteins are more randomly oriented as compared to those on hydrophilic surfaces. SFG data also shows that the orientation and ordering of phenyl rings in the polystyrene surface is affected by protein adsorption, depending on the amount and type of proteins.  相似文献   

14.
基于Pickering乳液模板法, 合成了2种用于制备非水泡沫的不同相对两亲面积的Janus颗粒, 并合成了表面均匀修饰的颗粒作为对比. 通过调整油混合物的性质, 对颗粒在油气表面上的行为进行了测量和对比, 对颗粒团聚体在颗粒吸附中的作用进行了研究. 结果表明, 受颗粒表面接触角的影响, Janus颗粒的表面活性(表面张力降低能力与产生泡沫的体积)不总是大于均匀改性颗粒. 均匀改性颗粒和Janus颗粒均不是以单个颗粒形式从体相吸附至表面上, 而是以颗粒团聚体状态向表面移动, 并且需要颗粒团聚体的Cassie-Baxter复合表面的接触角约为90°, 而颗粒的本征接触角小于70.1°.  相似文献   

15.
Associating polymers are hydrophilic long-chain molecules containing a small amount of hydrophobic groups. The aqueous solutions show viscoelastic responses above some critical concentrations because a three-dimensional structure is formed by association of hydrophobic groups. When the associating polymers are added to silica suspensions at low concentrations, the flocculation is induced by bridging mechanisms, and the flow of suspensions become shear-thinning. For suspensions prepared with polymer solutions in which the associating network is developed, the viscosity decreases, shows a minimum, and then increases with increasing particle concentration. The viscosity decrease may arise from the breakdown of associating network due to adsorption of polymer chains onto the silica surfaces. As the particle concentration is increased, the polymer concentration in solution is decreased, and finally, all polymer chains are adsorbed on the surfaces. Beyond this point, the partial coverage of particle surfaces takes place and strong interactions are generated between particles by polymer bridging. Since the stable suspensions are converted to highly flocculated systems, the viscosity is increased and the flow becomes shear-thinning. The concentration effect of silica particles on the viscosity behavior of suspensions can be explained by a combination of viscosity decrease in solution due to polymer adsorption and viscosity increase due to flocculation.  相似文献   

16.
The manipulation of colloidal nanoparticles (NPs) in a drying droplet has critical importance not only for several industrial applications but also their assembly into patterns on surfaces. The influence of a tip with hydrophilic or hydrophobic surfaces dipped into a drying droplet on hydrophilic or hydrophobic surfaces on the behavior of 98 nm latex NPs was investigated. The formation of concentric rings on hydrophilic glass surfaces regardless of the surface chemistry of the dipped tip was observed. On the other hand, no pattern formation on hydrophobic surfaces was observed with the insertion of the tip. With a hydrophilic tip, the concentric rings were formed due to stick-slip motion of the solvent contact line resulting from competition between pinning and capillary forces while the capillary effect was not effective until the surface of the tip was changed by adherent NPs making the tip surface available for water adherence with a hydrophobic tip, which results in the pulling of droplet towards the tip. It is also found that the tip thickness and suspension concentration significantly influences the formation of concentric rings on surfaces. This simple procedure can be used to influence the distribution or assembly of NPs in the droplet area.  相似文献   

17.
The wetting by water of the adsorbed layer of β-casein on hydrophobised silica and pure (hydrophilic) silica surface was investigated by dynamic contact angle measurements based on the Wilhelmy plate principle. The results are discussed in relation to adsorption data obtained for the protein on similar surfaces by in situ ellipsometry. β-casein adsorption on a hydrophobic surface leads to a significant decrease of the contact angle, in particular in terms of the receding contact angle, which decreased by about 70°. This indicates a strong shielding of the hydrophobic surface by the hydrophilic domain of β-casein. Adding a specific enzyme, endoproteinase Asp-N, which previously has been proposed to remove a large fraction of the hydrophilic segments, results in a significantly decreased wettability of the solid surface. The layer is now more hydrophobic and the hysterises is much smaller. The receding contact angle after the proteolysis is roughly 70°. The results are consistent with the hypothesis that β-casein adsorbs at the hydrophobic surface to form a monolayer with the hydrophobic part of the protein anchored at the surface, leaving the hydrophilic segments dangling into the solution. Less dramatic effects are observed in terms of changes of the wettability on the hydrophilic surface. The surface is still quite hydrophilic both after adsorbing β-casein and exposing the layer to endoproteinase Asp-N. These results confirm the differences in the structure of β-casein layers on the hydrophobic and hydrophilic surface.  相似文献   

18.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

19.
In order to explore the relationship between selective liquid sorption and the stability of dispersed silica particles, we carried out studies in ethanol–cyclohexane binary mixtures as well as in partially miscible 1-butanol–water mixtures. In ethanol–cyclohexane, adsorption excess isotherms were determined on hydrophilic and hydrophobic aerosil particles. The volume and the thickness of the adsorption layer were derived from the isotherms. Knowing the layer thickness and Hamaker constants, interparticle interaction potentials were calculated at various mixture compositions. At low ethanol concentration, where hydrophilic surfaces are considerably enriched in ethanol, interparticle interaction is enhanced and the high shear stress calculated from rheological measurements indicates the development of a three-dimensional network of aggregated particles. In contrast, hydrophobic aerosil particles in ethanol–cyclohexane approach each other without ensuing aggregation because interparticle interactions are weak, a fact well demonstrated by rheological measurements. It was also established that interactions between silica particles with hydrophilic surfaces are weak in butanol–water mixtures. Since water is preferentially adsorbed on the surface of hydrophilic particles to the azeotropic composition (\( x_{\rm{1}}^{\rm{a}} \)=0.62), within this wide composition range the Hamaker constant of the interfacial layer is identical with that of water.  相似文献   

20.
The amounts of negatively charged bovine serum albumin and positively charged lysozyme adsorbed on alumina, silica, titania, and zirconia particles (diameters 73 to 271 nm) in aqueous suspensions are measured. The adsorbed proteins change the zeta potentials and the isoelectric points (IEP) of the oxide particles. The added to adsorbed protein ratios at pH 7.5 are compared with the protein treated particle zeta potentials. It is found that the amounts of adsorbed proteins on the alumina, silica, and titania (but not on the zirconia) particle surfaces are highly correlated with the zeta potential. For the slightly less hydrophilic zirconia particles high amounts of protein adsorption are observed even under repulsive electrostatic conditions. One reason could be that the hydrophobic effect plays a more important role for zirconia than electrostatic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号