首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao Zhang 《Optics Communications》2010,283(10):2140-276
A polarization beam splitter with wide bandwidth and simple structure in air-hole-based periodic dielectric waveguides has been proposed and designed. Operation principle of the device is based on different directional coupling properties of beams in TE and TM polarizations in parallel periodic dielectric waveguides. Performances have been evaluated by a finite-difference time-domain simulation. Results show that the polarization beam splitter provides a wide bandwidth of 113 nm with both a high extinction ratio (higher than 21 dB) and a low insertion loss (less than 1.5 dB) for optical communication wavelengths at ∼1.55 μm. Moreover, the performances of the polarization beam splitter are insensitive to longitudinal alignment errors in the coupling region, which is desirable for device fabrication and practical application.  相似文献   

2.
An improved 1 × 4 coupler based on all solid multi-core photonic crystal fiber is proposed and analyzed. The expressions to calculate the coupling length and the coupling efficiency are deduced based on the coupled-mode equations firstly. Then a full-vector finite element method (FEM) is used to calculate the coupling length and the coupling efficiency. Next, the propagation characteristics and the performances of the coupler are analyzed through using a full vector beam propagation method (BPM). Research shows that the results derived by FEM agree with that by BPM. The coupling length of the coupler is 4.1 mm at λ = 1.55 μm. A maximum coupling efficiency of 24.96% can be obtained. The coupling ratio is more than 22.5% over a wavelength range of 100 nm. The polarization-dependent loss at λ = 1.55 μm is equal to 0.73 dB. Finally, the influences of the micro-variation of structure parameters and the material refractive index on the working performances of the coupler are investigated.  相似文献   

3.
This paper proposes 1 × N add-drop filter structures in which only one thin-film filter (TF) is used. Our key idea is based on a combination of an angle-multiplexing concept and the flexibility of the optical fiber to allow a multiwavelength optical beam hit the TF several times, each time at a different angle but same position. Due to the TF angle sensitivity, the desired wavelength optical beam corresponding to the incident angle is therefore spatially isolated from the main optical beam. Our first TF-based 1 × N add-drop filter structure is arranged in a reflective design in which N wavelength optical beams can be dropped out from the main channel. For our transmissive architecture, N − 2 channels are directed to their associated output terminals while the remaining λN−1 and λN wavelength optical beams are sent out at the same port. Experimental proof of concept for our reflective TF-based 1 × 3 add-drop filter using one off-the-shelf TF, a triple fiber-optic collimator, and an optical circulator separates two wavelength optical beams with their channel spacing of 0.8 nm from the main channel. In this case, measured optical losses of 0.67 dB, 1.66 dB, and 2.59 dB are obtained for the first, the second, and the remaining dropped wavelength optical beams, respectively. Optical crosstalk and polarization dependent loss of <−18 dB and <0.08 dB are also investigated, respectively.  相似文献   

4.
An experimental analysis of the influence of optical injection at 1.4 μm wavelength into two different commercial 1.55 μm DFB lasers is reported. The results demonstrate the strong dependence of the DFB behaviour on the injection parameters. Complete mode suppression or signal amplification can be obtained by varying the excitation wavelength and/or intensity, suggesting that these devices could be operated as logic ports or signal amplifiers, according to the injected signal.  相似文献   

5.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

6.
7.
Reconfigurable multi-channel optical power splitter is proposed and its optical properties are calculated. The device can dynamically reconfigure the number of splitting channels by providing programmed refractive index modulations on a multimode interference (MMI) waveguide. A reconfigurable 3-channel optical power splitter is designed to work as 1 × 1, 1 × 2 or 1 × 3 optical power splitter depending on the state of the heat electrodes using thermo-optic modulation, and the input light can be distributed to three output channels with sequential orders. The device can work in the whole C-band (1530-1565 nm) with extinction ratio better than −29.0 dB, excess loss better than −0.45 dB, imbalance better than 0.08 dB and polarization dependent loss (PDL) better than 0.14 dB. The design conception is scalable to a multi-channel splitting-on-demand optical power splitter which can divide input light to 1, 2, …, N output channels equally by using the 3-channel reconfigurable optical power splitter as a building block.  相似文献   

8.
Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.  相似文献   

9.
A 32 × 32 arrayed waveguide grating (AWG) multiplexer operating around the 1550 nm wavelength has been designed and fabricated using highly fluorinated polyethers. The propagation loss of the slab waveguide is about 0.3 dB/cm at 1550 nm wavelength. The channel spacing of the AWG multiplexer is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 10.3-15.3 dB and the crosstalk is less than −20 dB.  相似文献   

10.
A photonic wire-based directional coupler based on SOI was fabricated by e-beam lithography (EBL) and the inductively coupled plasma (ICP) etching method. The size of the sub-micron waveguide is 0.34 μm × 0.34 μm, and the length in the coupling region and the separation between the two parallel waveguides are 410 and 0.8 μm, respectively. The measurement results are in good agreement with the results simulated by 3D finite-difference time-domain method. The transmission power from two output ports changed reciprocally with about 23 nm wavelength spacing between the coupled and direct ports. The extinction ratio of the device was between 5 and 10 dB, and the insertion loss of the device in the wavelength range 1520-1610 nm was between 22 and 24 dB, which included an about 18.4 ± 0.4 dB coupling loss between the taper fibers and the polished sides of the device.  相似文献   

11.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

12.
A 1310 and 1550 nm coarse wavelength multi/demultiplexer based on benzocyclobutene (BCB 4024-40) polymer is demonstrated for the first time. The device is designed based on a combination of general interference and paired interference mechanisms of multimode interference (MMI). It is fabricated on BK7 glass substrate with a thin layer of SiO2 as cover. A cost effective chemical etching technique is used in the fabrication process to take advantage of the photosensitive nature of the polymer. The device length was significantly reduced by adopting the restricted multimode interference scheme, lower beat length ratio and cascaded MMI couplers. The measured crosstalk at 1310 nm was 14.4 dB and at 1550 nm was 20.6 dB. The measured insertion loss is around 3.2-3.5 dB for both ports.  相似文献   

13.
Optical loss measurements in femtosecond laser written waveguides in glass   总被引:1,自引:0,他引:1  
The optical loss is an important parameter for waveguides used in integrated optics. We measured the optical loss in waveguides written in silicate glass slides with high repetition-rate (MHz) femtosecond laser pulses. The average transmission loss of straight waveguides is about 0.3 dB/mm at a wavelength of 633 nm and 0.05 dB/mm at a wavelength of 1.55 μm. The loss is not polarization dependent and the waveguides allow a minimum bending radius of 36 mm without additional loss. The average numerical aperture of the waveguides is 0.065 at a wavelength of 633 nm and 0.045 at a wavelength of 1.55 μm. In straight waveguides more than 90% of the transmission loss is due to scattering.  相似文献   

14.
Considering the reabsorption loss of the quasi-three level system and the unsaturable loss of the saturable absorber, we obtained the operating condition of a diode-pumped simultaneous dual-wavelength Q-switched Nd:YAG laser operating at 1.06 μm and 946 nm. The dual-wavelength pulsed laser was realized successfully through adaptive coating design of the cavity mirrors. As much as 1.6 W total average output power of the dual-wavelength at 1.06 μm and 946 nm was achieved at the incident pump power of 14.2 W with an optical conversion efficiency of 11.3%.  相似文献   

15.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

16.
Hyper-NA ArF (193 nm) immersion lithography is one of the most potential technologies to achieve 32 nm critical dimension node. At the corresponding large angles in the photoresist, control of polarization becomes necessary. A polarization beam splitter (PBS) based on a subwavelength dielectric grating has been designed for use with 193 nm light. The polarization-selective property of such grating is explained by the mechanism of mode interference. The designed grating working as a 1 × 2 beam splitter can transmit TM wave (∼ 90%) to the zeroth order with extinction ratio of 753, and it diffracts TE wave (∼ 80%) to the −1st order with extinction ratio of 300.  相似文献   

17.
A 1 × 2 optical switch using only one multimode interference (MMI) region is designed and demonstrated in GaAs/AlGaAs. This design makes a single MMI region works as MMI coupler using paired interference at “off” state and symmetric interference at “on” state. By injecting a current of 110 mA, the measured on/off ratio and crosstalk are 23 dB and 33 dB, respectively in the demonstrated device with GaAs/GaAlAs.  相似文献   

18.
We design terahertz wave reflective polarizer that operates over a wide terahertz wavelength range and is based on a periodic bilayer structure. The structure is characterized by transfer matrix calculations. Results of simulations show that the mirror is highly reflecting for incidence angle θ ≤ 60°and TE as well as TM polarization in the wavelength range between 541.6 μm and 574.2 μm (i.e. frequency band between 522.5GHZ and 533.9 GHZ). As the incidence angle increases this reflection band blueshifts for both TM and TE polarizations.  相似文献   

19.
The photodetector properties of a Ge nanocrystals detector fabricated by pulsed laser deposition and in situ rapid thermal annealing treatment at 600 °C have been studied. Strong optical absorption and photocurrent response of the detector are measured in the wavelength range 1.3-1.55 μm. The detector possesses a low dark current of 61.4 nA and a photocurrent responsivity of 56 mA/W at the reverse bias 5 V. The external quantum efficiency at 1.55 μm is estimated to be 15%. The stop wavelength of absorption spectra extends to 1.65 μm. It indicates that these kind of Ge nanocrystals devices can be used as a 1.3-1.55 μm near infrared detector.  相似文献   

20.
In this paper, we propose a broad band 1 × 3 beam splitter operating in the telecommunication wavelength band under normal incidence, this device consisting of a double-groove fused silica grating layer is designed with using the inverse mathematical method and rigorous vector diffraction theory. It is shown from our calculations that the device presents excellent beam splitter ability for TE polarization light with the average diffraction efficiencies is more than 95% over ∼100 nm wavelength range, moreover, the uniformity of our beam splitter is better than 2% in the whole wavelength band. Furthermore, the physical understanding of the diffraction behaviors taking place inside the beam splitter gratings can be explained by the modal method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号