首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Paper deals with quantum chemical modeling of the optical absorption spectra of 6-fluoro, 7-trifluoromethyl, 6-cyano, 6-carboethoxy and 6-tert-butyl derivatives of 1-phenyl-3-methyl-1H-pyrazolo[3,4-b]quinoline. The calculations are performed by means of the semiempirical quantum chemical methods (AM1 or PM3) applied to the equilibrium molecular conformation in vacuo (T = 0 K) or molecular dynamic (MD) trajectories as obtained within fragmental or total MD simulations at T = 300 K. The results of these calculations are compared with the measured spectra of optical absorption. The quantum chemical analysis show that the dynamics of the methyl, trifluoromethyl, carboethoxy and tert-butyl groups practically does not influence the absorption spectra whereas the strongest their modifications are found to be related with dynamics of the aromatic group. The semiempirical method AM1 in combination with MD simulations gives for all dyes the best agreement between the calculated and measured spectral positions of absorption bands. In most cases the quantum chemical calculations describe properly the trends of their changes depending on the lateral substituent.  相似文献   

2.
Paper deals with the experimental investigations and quantum chemical calculations of the absorption spectra of newly synthesized 1,3-diphenyl-1H-Pyrazolo[3,4-b]quinoline and its 6-Vinyl, 6-N,N-Diphenyl, 6-Methyl, 6-Fluoro, 6-Bromo, and 6-Chloro derivatives. The calculations are performed by means of the semiempirical quantum chemical methods AM1 or PM3 combined with: (a) equilibrium molecular conformation (EMC) in vacuo; (b) the molecular conformation model considering a dynamical rotation of phenyl rings only (T = 300 K); and (c) the most general model of the conformational molecular dynamics (MD) at T = 300 K. It is shown that the phenyl dynamics appears to be not important in the spectral position of absorption thresholds as well as in a broadening of most absorbtion bands. On the other hand, the MD simulations reproduce a broadening of the absorbtion spectra as well as the electron-vibronic coupling leading to a red-shift of absorption bands with increasing of temperature. The conformational MD model in combination with the quantum chemical AM1 method gives in most cases the best agreement with the experimental data, namely in the sense of spectral positions and width of the absorption bands including first oscillators (absorption thresholds).  相似文献   

3.
The optical absorption and photoluminescent spectra are studied in recently synthesized diphenyl pyrazoloquinolines (DPPQ): 1,3-diphenyl-1H-pyrazolo[3,4-b] quinoline and its 6-vinyl, 6-N,N-diphenyl, 6-methyl, 6-fluoro, 6-bromo and 6-chloro derivatives. The photoemission spectra are recorded in organic solvents of different polarity and found to be highly solvatochromic. The measured spectra are compared with the quantum chemical calculations performed by means of the semiempirical methods (AM1 or PM3) in combination with the equilibrium molecular conformation (EMC) in vacuo (T = 0 K, Γ = 0.12 eV) or MD simulations (T = 300 K). The broadening of absorption and emission bands and their red-shift with increasing of temperature may be well reproduced by MD simulations. The Stokes shift of the photoluminescent spectra is obtained by including vibrational modes into the emission equation. The quantum chemical method AM1 in combination with MD simulations gives in most cases the best agreement with the experimental data. By comparing the emission spectra of 6-N,N-diphenyl-DPPQ with other DPPQ-derivatives one concludes that the molecular fragment diphenyl-amin [(C6H5)2N-] is likely subjected to strong conformational changes in solvents. The large difference between the excited- and state-dipole moments indicates on a strong electron transfer effect being common for all DPPQ derivatives.  相似文献   

4.
A wavelength-tunable mid-infrared (mid-IR) laser is used to make time-resolved absorption measurements of methyl-cyclohexane (MCH) and n-dodecane vapor concentration, demonstrating the use of this novel laser source for sensing hydrocarbon fuels. Two sensitive and species-specific diagnostic strategies are investigated: (1) direct absorption at a fixed wavelength, and (2) dual-wavelength differential absorption with two rapidly-alternating wavelengths. The tunable laser light is produced using difference frequency generation by combining two near-infrared diode lasers in a periodically poled lithium niobate crystal, providing a continuous-wave (cw), room temperature mid-IR source with the low intensity noise, and rapid wavelength tunability typical of telecommunications diode lasers. Direct absorption measurements of MCH with a wavelength of 3413.7 nm demonstrate fast time response (1 μs) and low noise in cell (300-675 K) and shock tube (650-1450 K) experiments. The detection limits of MCH range from 0.5 ppm-m at 300 K to 11 ppm-m at 1440 K (pressure = 101 kPa). Next, time-division multiplexing is used to alternately generate two mid-IR wavelengths at 20 kHz, enabling the use of dual-wavelength differential absorption to eliminate interference absorption. Measurements of MCH concentration are first made in a cell, with varying amounts of n-heptane interference absorption. Accurate values of MCH concentration are obtained for n-heptane/MCH ratios as high as 15, demonstrating the utility of this sensor for species-specific hydrocarbon detection in systems with interfering absorption. Finally, time-resolved n-dodecane vapor concentration measurements are made in a shock-heated evaporating aerosol. The dual-wavelength differential absorption diagnostic is sensitive only to the vapor concentration, rejecting droplet extinction. These measurements illustrate the power of the differential absorption strategy for sensitive vapor-phase detection in the presence of particle scattering. The tunability of this new source will allow these concepts to be extended to other hydrocarbon fuels.  相似文献   

5.
The purely electronic linewidth δ of terrylene impurity molecules in monocrystalline biphenyl is studied at temperatures T between 1.7 and 3.5 K using the technique of single-molecule spectroscopy (SMS). Based on the data obtained, individual molecules appear to have their own law of δ(T) dependence; further, hysteresis effects have been observed in thermocycling experiments. The single-molecule (SM) lines investigated quickly broaden and vanish at temperatures between 3 and 3.5 K and reappear after the sample is cooled down again. At T≈2 K, a slow process of spectral diffusion (SD) was observed on timescales longer than 10 s. To learn about the role of faster SD processes, the technique of intensity-time-frequency correlation (ITFC) SMS was applied to a stable SM line after it had been broadened by 75% as a result of a thermocycling experiment. At 2 and 2.3 K, no significant line broadening could be revealed on timescales between 0.16 ms and 10 s.  相似文献   

6.
S.J. May 《Applied Surface Science》2006,252(10):3509-3513
Variable-temperature magnetic force microscopy (MFM) has been performed over the temperature range of 298-348 K on ferromagnetic (In,Mn)As thin films deposited by metal-organic vapor phase epitaxy (MOVPE). Ferromagnetic domains were observed with submicron resolution in both single and two phase (In,Mn)As films, persisting up to 328 K. Isolated cylindrical domains ranging from 100 to 350 nm in diameter with densities of 2-5 × 108 cm−2 were observed in phase pure films. Longer range magnetic order, in the form of ribbon-like domains up to 1 μm in length, are present in the regions between the cylindrical domains. Two phase (In,Mn)As films produced a well-resolved complex domain structure consisting of 180° parallel and antiparallel domains. Excellent agreement between the temperature dependence of the relative magnetization obtained by MFM and superconducting quantum interference device measurements was observed.  相似文献   

7.
Crystalline quartz films with an AT-cut plane have been grown by catalyst-enhanced vapor-phase epitaxy, at atmospheric pressure, using two quartz buffer layers on a sapphire (110) substrate. In this method, the first quartz buffer layer was deposited on the sapphire (110) substrate at 773 K. After annealing at 823 K, the second buffer layer was deposited at 723 K. The crystal quartz epitaxial layer was then grown at 843 K. The X-ray full-width-at-half-maximum (FWHM) value of the crystalline quartz film obtained was smaller than that of crystalline quartz prepared using a hydrothermal process. The crystalline quality of the quartz films was dependent on the thickness of the buffer layers. Furthermore, it was found that angle control of the cut plane depended on the film thickness of the second buffer layer. The quartz films grown by vapor phase epitaxy show good oscillation characteristics at room temperature.  相似文献   

8.
The excited state absorption (ESA) transitions at 1050 and 1420 nm play a fundamental role in thulium-doped fiber amplifiers (TDFA). We present a novel setup to measure the spectral cross-sections of these transitions in amplifier fibers and the results of this measurement in case of thulium-doped fluorozirconate (ZBLAN) fibers. Besides a standard system for fiber attenuation measurements and a long-pass filter, we use only components from the fiber amplifier setup, including the active fiber. No special parts are needed. We show that this fiber optic method delivers reliable results for different lengths of the doped fibers. The oscillator strengths of the measured transitions are calculated and compared to values published in the literature.  相似文献   

9.
Surface phase diagrams of GaN(0 0 0 1)-(2 × 2) and pseudo-(1 × 1) surfaces are systematically investigated by using our ab initio-based approach. The phase diagrams are obtained as functions of temperature T and Ga beam equivalent pressure pGa by comparing chemical potentials of Ga atom in the vapor phase with that on the surface. The calculated results imply that the (2 × 2) surface is stable in the temperature range of 700-1000 K at 10−8 Torr and 900-1400 K at 10−2 Torr. This is consistent with experimental stable temperature range for the (2 × 2). On the other hand, the pseudo-(1 × 1) phase is stable in the temperature range less than 700 K at 10−8 Torr and less than 1000 K at 10−2 Torr. Furthermore, the stable region of the pseudo-(1 × 1) phase almost coincides with that of the (2 × 2) with excess Ga adatom. This suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1 × 1) to the (2 × 2) with Ga adatom and vice versa.  相似文献   

10.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

11.
The temperature dependence of the infrared absorption cross-sections of CFC-113 (1,1,2-trichlorotrifluoroethane) in a pure vapor phase has been recorded in the 600-1250 cm−1 spectral region using Fourier transform spectroscopy. Spectra at 0.05 cm−1 resolution have been used to derive the integrated band strengths of the five main absorption bands over a range of temperatures from 223 to 283 K. Our results show good agreement with previously published data. The new cross-sections will allow more accurate retrieval of atmospheric CFC-113 concentrations using infrared spectroscopic techniques.  相似文献   

12.
To understand the nature of grain boundaries in polycrystalline materials, magneto-transport and ferromagnetic resonance measurement have been performed in polycrystalline La0.6Pb0.4MnO3 (LPMO) thin films prepared by pulsed laser deposition. Films are found to undergo a semiconductor to metal transition at 230 K and re-enter into the semiconducting state below 130 K. Microwave absorption measurements carried out as function of applied field show two components of resonant absorption signal. First component is in accordance with ferromagnetic transition of grains at Curie temperature and the second component shows antiferromagnetic transition of grain boundaries at 160 K. An additional non-resonant absorption signal centered at zero field has also been observed that supports transition from conducting to insulating grain boundaries at ∼160 K. Further, temperature dependence of resistance in semiconducting state at low temperatures is in accordance with coulomb blockade model indicating insulating nature of AFM grain boundaries.  相似文献   

13.
Pressure broadened (1 atm. N2) laboratory spectra of benzene vapor (in natural abundance) were recorded at 278, 298, and 323 K, covering 600-6500 cm−1. The spectra were recorded at a resolution of 0.112 cm−1 using a commercial Fourier transform spectrometer. The pressure of each benzene vapor sample was measured using high-precision capacitance manometers, and a minimum of nine sample pressures were recorded for each temperature. The samples were introduced into a temperature-stabilized static cell (19.94(1) cm pathlength) that was hard-mounted into the spectrometer. From these data a fit composite spectrum was calculated for each temperature. The number density for the three composite spectra was normalized to 296 K. The spectra give the absorption coefficient (cm2 molecule−1, naperian units) as a function of wavenumber. From these spectra integrated band intensities (cm molecule−1 and atm−1 cm−2) for intervals corresponding to the stronger benzene bands were calculated and were compared with previously reported values. We discuss and quantify error sources and estimate our systematic (NIST Type-B) errors to be 3% for the stronger bands. The measured absorption coefficients and integrated band intensities are useful for remote sensing applications such as measurements of planetary atmospheres and assessment of the environmental impact of terrestrial oil fire emissions.  相似文献   

14.
The shapes of Dicke-narrowed spectral lines in the fundamental P-branch of CO in Ar are studied by comparing high-resolution measurements and theoretical calculations. The measured spectra were recorded at temperatures between 214 and 324 K, and at pressures between 0.025 and 1 atm. The calculations are based on solving a transport/relaxation equation for the appropriate off-diagonal element of the density matrix; they use a realistic intermolecular potential to determine the speed-dependent collisional broadening, and a rigid sphere potential to determine the Dicke narrowing. It is found that the calculations can reproduce the measured spectra within the experimental noise under all conditions, but that the magnitude of the Dicke narrowing in the measured spectra is 70-90% less than predicted from the mass diffusion constant. A revised view of the collision operator resolves the discrepancy in principle, and leads to a better understanding of the line shape problem in general.  相似文献   

15.
The optical absorption spectra of the small mono-crystals samples of stishovite and coesite were studied at first. The intrinsic absorption threshold of stishovite is determined at 8.75 eV, being probably, highest in the family of different crystalline polymorph modifications of silicon dioxide. The absorption spectrum of stishovite is independent of temperature (studied in the range 290-450 K). The intrinsic absorption threshold of coesite mono-crystal situated near 8.6 eV at 293 K, coincides within experimental errors with that of α-quartz crystal, and depends on temperature, as used to be for the tetrahedron structured silicon dioxide crystalline modifications. A broad absorption band with a first spread maximum near 7.6 eV sides with intrinsic absorption threshold was found in the stishovite mono-crystal sample. Its low intensity (about 10 cm−1) in an as-received sample shows on a defective nature of this band. No analogous band was detected in the sample of coesite.  相似文献   

16.
A light induced absorption peculiarity connected with an absorption peak in the visible range for SBN/Ce was detected. The analysis of these data together with investigation results for a visible range center (VIS-center) absorption study in SBN/Ce and Cr, in nominally pure strontium barium niobate (SBN) as well as in Ba0.77Ca0.23TiO3 crystals give support to charge transfer vibronic excitons (CTVEs) as origin of the phenomenon. While the fast (with relaxation time ∼1 ns at T∼300 K) response can be connected with transitions between excited branches of the adiabatic potential of the CTVE phase, the slow (with relaxation time ∼50 s at T∼230 K for SBN/Cr) response is connected with transitions between ground and first excited CTVE phase branches. The additional contribution to the latter effect due to the absorption of recharged oxygen ions which are in the framework of charge transfer induced by the CTVE cannot be disregarded. The explanation of the main results of the experiments shows that the VIS-center phenomena can be induced by the CTVE-states.  相似文献   

17.
Effect of water vapor quantity at oxidation of undoped ZnS films on structural and luminescent properties of the obtained films was investigated. The films were deposited onto glass substrates by electron beam evaporation. ZnO-ZnS layers were prepared by thermal oxidization of ZnS films at 600 °C in dry or wet atmospheres. The films were characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. As-deposited ZnS films were sphalerite crystal structure. The “dry annealing” led to the ZnS phase transition from sphalerite to wurtzite structure and from ZnS to ZnO for a small fraction of the film. After the “wet annealing” the amount of ZnO phase with wurtzite structure growing along the 〈0 0 0 2〉 direction varied from 25% to 95% in dependence on the water vapor quantity. Photoluminescent spectrum at room temperature exhibits green emission with maximum at 2.4 eV. A strong influence of the water vapor on shape and intensity of the emission was observed. Photoluminescent spectra at 22 K consisted of two bands—high-energy band at 2.1-2.4 eV and low energy band at 1.7-1.8 eV. Location and intensity ratio depended on the preparation conditions.  相似文献   

18.
We present a spectroscopic study of the water vapor continuum absorption in the far-IR region from 10 to 90 cm−1 (0.3-2.7 THz). The experimental technique combines a temperature-stabilized multipass absorption cell, a polarizing (Martin-Puplett) interferometric spectrometer, and a liquid-He-cooled bolometer detector. The contributions to the absorbance resulting from the structureless H2O-H2O and H2O-N2 continua have been measured in the temperature range from 293 to 333 K with spectral resolution of 0.04-0.12 cm−1. The resonant water vapor spectrum was modeled using the HITRAN04 database and a Van Vleck-Weisskopf lineshape function with a 100 cm−1 far-wing cut-off. Within experimental uncertainty, both the H2O-H2O and H2O-N2 continua demonstrate nearly quadratic dependencies of absorbance on frequency with, however, some deviation near the 2.5 THz window. The absorption coefficients of 3.83 and 0.185 (dB/km)/(kPa THz)2 were measured for self- and foreign-gas continuum, respectively. The corresponding temperature exponents were found to be 8.8 and 5.7. The theoretically predicted foreign continuum is presented and a reasonable agreement with experiment is obtained.  相似文献   

19.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

20.
GeH4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO2/Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号