首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality.  相似文献   

2.
We have developed a dual-channel optical coherence tomography-Indocyanine Green dye (OCT-ICG) fluorescence system based on a previously reported ophthalmic OCT confocal imaging system. The confocal channel is tuned to the fluorescence wavelength range of the ICG, and light from the same optical source is used to generate the OCT image and to excite the ICG fluorescence. The system enables the clinician to visualize simultaneously en face OCT slices and corresponding ICG angiograms of the ocular fundus, displayed side by side. C-scan (constant depth) and B-scan (cross section) images are collected by a fast en face scan (T scan). The pixel-to-pixel correspondence between the OCT and angiography images allows the user to capture OCT B scans precisely at selected points on the ICG confocal images.  相似文献   

3.
We report a system capable of sequentially acquiring two en-face images of different depth resolutions. The two images are generated by use of different principles, optical coherence tomography (OCT) and confocal microscopy, and have depth resolutions, at present, of better than 20 microm and over 0.12 mm, respectively. The lower-depth-resolution image is ideal for target positioning before collection of stacks of en-face OCT images. Switching between the two types of image by flipping an opaque screen in the reference arm, coupled with self-adjusting gain operation of avalanche photodiodes in the receiver. We illustrate the usefulness of the system by imaging a leaf and an optic nerve in vivo.  相似文献   

4.
A method for depth sensing based on sensing the visibility associated with the coherence function of a laser source is presented. The setup is based on an electronic speckle pattern interferometric (ESPI) setup, where the object depth is encoded into the amplitude of the interference pattern without the need for depth scanning. After performing phase-shifting method, the object three-dimensional (3-D) shape is reconstructed by means as a range image from the visibility of the image set of interferograms and where each gray level represents a given object depth. Experimental results validate the proposed approach for reflective diffuse objects at different measurement distances.  相似文献   

5.
We present a novel algorithm for full-range imaging by suppression of the complex conjugate artifact in phase-shifting Fourier domain optical coherence tomography. This technique utilizes the projection of multiple phase-shifted interferograms onto an orthogonal basis set to reconstruct the complex interferogram. Full-range imaging with >30 dB suppression of the symmetric artifact is demonstrated using a 3 x 3 fiber coupler swept source OCT system, providing a depth range of 6.6mm with -8 dB roll-off in sensitivity at the depth boundaries relative to DC. Real-time display of full-range images of the anterior segment of the human eye acquired in vivo at a line rate of 6.67 kHz are presented.  相似文献   

6.
An experimental tracking optical coherence tomography (OCT) system has been clinically tested. The prototype instrument uses a secondary sensing beam and steering mirrors to compensate for eye motion with a closed-loop bandwidth of 1 kHz and tracking accuracy, to within less than the OCT beam diameter. The retinal tracker improved image registration accuracy to <1 transverse pixel (<60 microm). Composite OCT images averaged over multiple scans and visits show a sharp fine structure limited only by transverse pixel size. As the resolution of clinical OCT systems improves, the capability to reproducibly map complex structures in the living eye at high resolution will lead to improved understanding of disease processes and improved sensitivity and specificity of diagnostic procedures.  相似文献   

7.
For the single-shot full-field optical coherence tomography (OCT) using spatially phase-modulated reference light, the basic characteristics have been simulated. At low spatial frequencies, the OCT signal intensity is enhanced twofold owing to subtractions, and with increasing the spatial frequency, the OCT signal intensity decreases 0.636 times at half the Nyquist frequency. OCT signal intensities also depend on orientations in images. Residual noninterference components of signal intensities between adjacent uniform areas increase background noise and reduce the system sensitivity. In the reference light, the optimum phase difference between adjacent uniform areas is 180 deg. Deviations from 180 deg reduce subtracted interference components. It is important that interference intensity, noninterference components and phases between adjacent uniform areas be approximately the same to obtain the OCT image with the reduction of background noise stably.  相似文献   

8.
We proposed two process algorithms for resolution improvement and contrast enhancement in the images of optical coherence tomography (OCT). An OCT system with a non-Gaussian light source spectrum or dispersion mismatch usually results in sidelobes in the interference fringe envelope that may produce artifacts and reduce image contrast. Based on the concept of deconvolution, we proposed two different process algorithms and demonstrated their effectiveness in retrieving sample structures. The effects of the process algorithms were examined by numerical simulations and real OCT scanning images. After processing with the proposed procedures, the effects of sidelobes were tremendously suppressed and the image qualities were improved.  相似文献   

9.
We describe a novel imaging technique, second-harmonic-generation optical coherence tomography (SHOCT). This technique combines the spatial resolution and depth penetration of optical coherence tomography (OCT) with the molecular sensitivity of second-harmonic-generation spectroscopy. As a consequence of the coherent detection required for OCT, polarization-resolved images arise naturally. We demonstrate this new technique on a skin sample from the belly of Icelandic salmon, acquiring polarization-resolved SHOCT and OCT images simultaneously.  相似文献   

10.
We propose and demonstrate quadrature fringes wide-field optical coherence tomography (QF WF OCT) to expand an optical Hilbert transformation to two-dimensions. This OCT simultaneously measures two quadrature interference images using a single InGaAs CCD camera to obtain en face OCT images. The axial and lateral resolutions are measured at 29 μm in air and 70 μm limited by a pixel size of camera using a superluminescent diode with a wavelength of 1.3 μm as the light source; the system sensitivity is determined to be −90 dB. The area of the en face OCT images is 4.0 mm × 4.0 mm (160 × 160  pixels). The OCT images are measured axially with steps of 10 μm. The en face OCT images of a in vivo human fingertip and a in situ rat brain are three-dimensionally measured up to the depth of about 3 mm with some degradations of a lateral resolution.  相似文献   

11.
An L  Wang RK 《Optics letters》2007,32(23):3423-3425
We report a new yet simple method to achieve full-range complex Fourier-domain optical coherence tomography (OCT) for in vivo imaging. The method utilizes a scanner that is dedicated for lateral scanning in the system to introduce a constant carrier frequency into the OCT spectral interferograms during the scanning. This is achieved by simply offsetting the sampling beam spot away from the pivot point of the scanning mirror. We demonstrate the method experimentally for in vivo full-range imaging of the anterior segment of a human eye. The method is free from complex conjugate mirror image and self-cross-correlation image artifacts.  相似文献   

12.
An efficient algorithm for computing optical coherence tomography is presented, which is based on the discrete differences of a time/depth sequence of interferograms. The existing multiple-step phase-shift algorithms, including those solved from Carré and Hariharan equations as well as circular-step algorithm proposed by Dubois et al., are analyzed and compared with the proposed algorithm. The analytical and experimental results show the computational efficiency of the new algorithm outperforms others. The simulations also demonstrate that the algorithm based on derivatives of four phase-shifted images is less sensitive to the phase-shift noise comparing to traditional 4-step phase-shift-based algorithm.  相似文献   

13.
We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial resolution and velocity sensitivity in flow images and increases imaging speed by more than 2 orders of magnitude without compromising spatial resolution or velocity sensitivity. The minimum flow velocity that can be detected with an axial-line scanning speed of 400 Hz and an average phase change over eight sequential scans is as low as 10 microm/s, while a spatial resolution of 10 microm is maintained. Using this technique, we present what are to our knowledge the first phase-resolved OCT/ODT images of blood flow in human skin.  相似文献   

14.
Saxer CE  de Boer JF  Park BH  Zhao Y  Chen Z  Nelson JS 《Optics letters》2000,25(18):1355-1357
A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states.  相似文献   

15.
Wu CT  Chi TT  Lee CK  Kiang YW  Yang CC  Chiang CP 《Optics letters》2011,36(15):2889-2891
A method, novel to our knowledge, for effective mirror image suppression in Fourier-domain optical coherence tomography based on a phase shift between neighboring A-mode scans is demonstrated. By realizing that the phase shifts of the real and mirror images are mutually reversed and assuming that the real image intensities of the two successive A-mode scans are the same, we can solve a set of two coupled equations to obtain the real image signals. The images based on the scanning of a high-resolution spectral-domain optical coherence tomography system are processed to show effective mirror image suppression results. Compared with a similar method of broad application, our approach has the advantages of shorter process time and higher flexibility in selecting the concerned image portions for processing.  相似文献   

16.
Wu J  Conry M  Gu C  Wang F  Yaqoob Z  Yang C 《Optics letters》2006,31(9):1265-1267
We report a novel forward-imaging optical coherence tomography (OCT), needle-probe paired-angle-rotation scanning OCT (PARS-OCT) probe. The probe uses two rotating angled gradient-index lenses to scan the output OCT probe beam over a wide angular arc (approximately 19 degrees half-angle) of the region forward of the probe. Among other advantages, this probe design is readily amenable to miniaturization and is capable of a variety of scan modes, including volumetric scans. To demonstrate the advantages of the probe design, we have constructed a prototype probe with an outer diameter of 1.65 mm and employed it to acquire four OCT images, with a 45 degrees angle between adjacent images, of the gill structure of a Xenopus laevis tadpole. The system sensitivity was measured to be 93 dB by using the prototype probe with an illumination power of 450 microW on the sample. Moreover, the axial and the lateral resolutions of the probe are 9.3 and 10.3-12.5 microm, respectively.  相似文献   

17.
张晶  任文艺  曹奇志  李建映  邓婷  Jin Ming-Wu 《物理学报》2018,67(4):40701-040701
空间调制快拍成像测偏技术能将偏振信息编码到一幅干涉图中,通过一次测量同时获取目标全部斯托克斯参量.针对空间调制快拍成像测偏技术中,目标像的高频部分对偏振信息通道产生串扰,导致重构的偏振信息包含有伪信息和频域重构目标像的空间分辨率低等问题,提出一种消除伪信息和获取全分辨率目标像的方法.该方法通过对两次快拍测量获得的干涉图进行简单加减运算,便可获得探测目标清晰的纯图像和高信噪比的偏振分量干涉图.本文对该方法进行了详细的理论分析,并通过计算机仿真和搭建实验平台,验证了该方法的可行性.这为空间调制快拍成像测偏技术获取全分辨率目标像和高质量重构偏振信息提供了新思路.  相似文献   

18.
Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT.  相似文献   

19.
Statistics and reduction of speckle in optical coherence tomography   总被引:1,自引:0,他引:1  
Studies have shown that optical coherence tomography (OCT) is useful in imaging microscopic structures through highly scattering media. Because spatially coherent light is used in OCT, speckle in the reconstructed image is unavoidable, resulting in degradation of the quality of the OCT images and impaired ability to differentiate subsurface structures. Therefore speckle reduction is an important issue in OCT imaging. We develop speckle statistics that are appropriate to the OCT measurements and demonstrate a simple and practical speckle-reduction technique.  相似文献   

20.
In the present cosmetic market, the skin image obtained from a hand-held camera is two-dimensional (2-D). Due to insufficient penetration, only the skin surface can be detected, and thus phenomena in the dermis cannot be observed. To take the place of the conventional 2D camera, a new hand-held imaging system is proposed for three-dimensional (3-D) skin imaging. Featuring non-invasiveness, optical coherence tomography (OCT) has become one of the popular medical imaging techniques. The dermal images shown in OCT-related reports were mainly single-colored because of the use of a monotonic light source. With three original-colored beams applied in OCT, a full-colored image can be derived for dermatology. The penetration depth of the system ranges from 0.43 to 0.78 mm, sufficient for imaging of main tissues in the dermis. Colorful and non-invasive perspectives of deep dermal structure help to advance skin science, dermatology and cosmetology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号