首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reflection-type wavelength selective IR emitter is proposed. Surface plasmon polaritons (SPPs), which occur on metallic grating at a wavelength near the pitch of the structure, are used for controlling thermal emissions. An emission peak at a wavelength nearly equal to the period of the grating is observed. As for the other wavelength, which cannot couple with the SPPs, the IR power is confined by the reflectors including the grating. The emitter temperature increases, consuming lower input power with higher power efficiency.  相似文献   

2.
The anomalous transmission through one-dimensional lamellar metallic gratings was investigated in terahertz (THz) regime. The extraordinary optical transmission (EOT) is identified to originate from two possible ways: coupling of incident light with waveguide resonances and coupling of surface plasmon polaritons (SPPs) at the upper and lower interfaces of metal grating. The dual effects of SPPs have been clarified in this study: (i) the excitation of SPP modes at each individual interface results in the weakness of the THz wave transmission; and (ii) the coupling of SPP modes at two interfaces of metal grating is attributed to enhancement of THz wave transmission. The enhanced transmission is dominated by the coupling of incident light with transverse waveguide resonances. Numerical simulation based on finite-difference time-domain (FDTD) agrees well with experimental results.  相似文献   

3.
李嘉明  唐鹏  王佳见  黄涛  林峰  方哲宇  朱星 《物理学报》2015,64(19):194201-194201
研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.  相似文献   

4.
丁岚  刘劲松  王可嘉 《中国物理 B》2010,19(12):127302-127302
By using a finite difference time domain(FDTD) method,the effects of a one-dimensional(1D) surface defect on designer surface plasmon polaritons(designer SPPs) supported by a 1D metallic grating in THz domain are investigated.When the size of the defect is in a special range which is not too large,the designer SPPs reflected and scattered by the defect are weak enough to be neglected.The defect only induces a disturbance in the energy distribution of the designer SPP supported by the whole defect grating.If the defect size exceeds the said range,the reflecting and scattering are dominant in the influences of the defect on designer SPPs.Our analysis opens opportunities to control and direct designer SPPs by introducing a 1D defect,especially in low frequency domain.  相似文献   

5.
Dolev I  Volodarsky M  Porat G  Arie A 《Optics letters》2011,36(9):1584-1586
Whereas periodic gratings enable us to couple light into a surface plasmon polariton only at a specific angle and wavelength, we show here that quasiperiodic gratings enable the coupling of light at multiple wavelengths and angles. The quasiperiodic grating can be designed in a systematic manner using the dual-grid method, thereby enabling us to control the coupling strength and grating dimensions. We verified the method experimentally by efficiently coupling light into a surface plasmon from several different illumination angles using a single quasiperiodic grating.  相似文献   

6.
We clarify the nature of coupling between surface plasmon polaritons (SPP) and transmitted light in metallic nanoslit structures. The coupling strength is found to be the product of the geometric opening ratio, the aperture momentum, and the Fabry-Perot factor. We determine the effective coupling, which includes corrections due to other SPPs, and show that this effective coupling causes enhanced transmission with redshifted or blueshifted transmission peaks. Without coupling, SPP is proven to suppress transmission due to the equipartition of diffraction orders. These results show good agreement with experiment.  相似文献   

7.
王平  胡德骄  肖钰斐  庞霖 《物理学报》2015,64(8):87301-087301
对金属光栅进行严格耦合波理论计算, 得到了780和1500 nm波长入射光条件下不同光栅调制深度(20-80 nm)对应的反射谱. 根据Fano理论推导了描述反射谱线的经验公式, 最后应用有限元法计算光栅表面近场电场分布, 验证了公式的正确性. 反射谱线公式反映出光栅耦合表面等离子体的各个物理效应, 其中最重要的是反映出光栅在某一调制深度下对表面等离子体反耦合的抑制作用, 这一发现为设计光栅能量约束器件提供了物理依据.  相似文献   

8.
李志全  张明  彭涛  岳中  顾而丹  李文超 《物理学报》2016,65(10):105201-105201
本文构建了一种包含石墨烯和亚波长光栅的复合结构, 借助衍射光栅的导模共振效应, 在石墨烯表面激发高局域性表面等离子体激元, 研究了石墨烯与光栅结构对表面等离子体激元局域特性的影响规律, 并借助基于有限元法的COMSOL软件, 分析了缓冲层厚度、光栅周期、载流子迁移率和费米能级对石墨烯的表面电场、品质因子Q和有效模式面积Seff的影响. 结果表明, 石墨烯表面等离子体激元的局域性在特定的参数点获得显著提高: 当μ = 0.7 m2/(V·s)时, 品质因子达到最大值Qmax = 1793; 当p = 235 nm或EF = 0.72 eV时, 表面电场达到了入射光的3000倍以上. 强烈的局域性导致强烈 的光-物质相互作用, 因而本文提出的复合结构可实现高灵敏度传感器和高效率的非线性光学设备, 极大地扩展了石墨烯在纳米光学领域中的应用.  相似文献   

9.
表面等离子体激元的若干新应用   总被引:2,自引:0,他引:2  
表面等离子体激元(SPPs)是在金属和介质界面传播的一种波动模式。本文首先叙述了SPPs的相关特性和激发方式,给出了一种基于表面等离子体激元共振(SPR)场增强原理产生相干极紫外辐射的方法,利用该方法可极大地提高光源的光子流量。分析了SPPs在生物及医疗领域的新应用,并对其在治疗癌症方面的技术原理进行了讨论。介绍了SPPs在新型光源和能源领域的发展和应用情况,综述了SPPs在太阳能电池、光子芯片以及集成电路方面的新工艺和新技术,包括最近几年来所取得的一些重要成果。最后讨论了SPPs在光存储方面的快速发展和巨大贡献。  相似文献   

10.
祁云平  周培阳  张雪伟  严春满  王向贤 《物理学报》2018,67(10):107104-107104
金属单缝纳米结构因为结构简单、易于集成,常用在基于表面等离极化激元(surface plasmon polaritons,SPPs)的纳米结构中构建光源.但是,金属亚波长单缝结构一直存在透射率低的问题,如何提高其透射率一直是研究的重点.为了更好地提高金属亚波长单缝的透射率,本文对之前文献提出的分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝结构进行改进,在金属银薄膜两侧设计凹槽.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上和银膜入射侧凹槽一起激发的塔姆激元(Tamm plasmon polaritons,TPPs)和SPPs,以及纳米缝和银膜出射侧凹槽对的SPPs同时激发,利用凹槽激发的SPPs和银膜表面处的TPPs-SPPs混合模式的干涉相长耦合作用,通过塔姆激元的局域场增强效应和两侧凹槽与单纳米缝的干涉相长耦合作用进一步提高了表面等离极化激元模式的激发效率,再加上纳米缝中的类法布里-珀罗腔共振效应,使纳米缝的透射率得到增强.本文采用有限元方法研究了DBR-银纳米缝结构上单纳米缝加凹槽的透射特性.经过一系列参数优化,使DBR-银纳米缝凹槽结构的最大透射率增加到0.22,相对于TiO_2-银纳米缝结构的透射率(0.01)提高了22倍,比文献[23]得到的最大透射率0.166有所提高.研究结果在纳米光源设计、光子集成电路和光学信号传输等相关领域具有一定的应用价值.  相似文献   

11.
符平波  陈跃刚 《中国物理 B》2022,31(1):14216-014216
Resonance cavity is a basic element in optics,which has wide applications in optical devices.Coupled cavities(CCs)designed in metal-insulator-metal(MIM)bus waveguide are investigated through the finite difference time domain method and coupled-mode theory.In the CCs,the resonant modes of the surface plasmon polaritons(SPPs)split with the thickness decreasing of the middle baffle.Through the coupled-mode theory analysis,it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting.The resonant wavelength of positive coupling mode can be tuned in a large range(about 644 nm)through adjusting the coupling strength,which is quite different from the classical adjustment of the optical path in a single cavity.Based on the resonances of the CCs in the MIM waveguide,more compact devices can be designed to manipulate SPPs propagation.A device is designed to realize flexible multiple-wavelength SPPs routing.The coupling in CC structures can be applied to the design of easy-integrated laser cavities,filters,multiple-wavelength management devices in SPPs circuits,nanosensors,etc.  相似文献   

12.
The mechanism of optical unidirectional (OUD) transmission in parallel subwavelength dual-metal gratings was investigated. It was found that this kind of OUD phenomenon originates from the coupling of the surface plasmon polaritons (SPPs) between the front grating and a layer of metal film which replaces the rear grating. The higher the intensity of the coupled SPPs at the entrances of the rear grating, the higher the transmittance can be achieved. Basing on this property, an effective OUD example was achieved by exploring the intensity difference at the entrances of the rear gratings between the two incidences of opposite directions. In this kind of OUD, the positive transmittance can exceed 80 % and the difference between the transmittances of the two opposite directions can be as large as 63 %. The detailed design process was also presented.  相似文献   

13.
表面等离子体亚波长光学前沿进展   总被引:2,自引:0,他引:2  
张斗国  王沛  焦小瑾  唐麟  鲁拥华  明海 《物理》2005,34(7):508-512
目前表面等离子体激元(surface plasmon polaritons,SPPs)在光存储、光激发、显微术以及生物光子学等领域中的应用前景受到了广泛的关注.文章介绍了SPPs的基本性质和表面等离子体亚波长光学(surface plasmons subwavelength optics)研究中的热点问题及发展方向.  相似文献   

14.
We carried out an experimental and numerical investigation of photoinduced voltage at normal incidence in the nondiffraction regime, which was not predicted to occur by the simple momentum conservation model. We prepared two samples: one having space inversion symmetry and the other without this feature. At normal incidence in the nondiffraction regime, we observed a finite signal only for the asymmetric structure. We found that surface plasmon polaritons (SPPs) are excited by the signal and are attributed to the origin of the voltage. We also evaluated the radiation force of light by using the Maxwell stress tensor and found that pressure of light and not shear force is mainly induced in the structure due to the asymmetric excitation of SPPs.  相似文献   

15.
We investigate the energy transfer of surface plasmon polaritons (SPPs) based on adiabatic passage in a non-Hermitian waveguide composed of three coupled graphene sheets. The SPPs can completely transfer between two outer waveguides via the adiabatic dark mode as the waveguides are lossless and the coupling length is long enough. However, the loss of graphene can lead to breakdown of adiabatic transfer schemes. By utilizing the coupled mode theory, we propose three approaches to cancel the nonadiabatic coupling by adding certain gain or loss in respect waveguides. Moreover, the coupling length of waveguide is remarkably decreased. The study may find interesting application in optical switches on a deep-subwavelength scale.  相似文献   

16.
Based on the radiation properties of surface plasmon polaritons (SPPs) can be controlled by adjusting the refractive indexes of dielectric materials in the metallic slits, a novel plasmonic focusing structure formed by two subwavelength metal apertures filled with Kerr nonlinear material surrounded by surface dielectric gratings is proposed and demonstrated numerically. Directions of radiation fields are determined by the phase difference of the surface waves at the exit interface and resonance property of each surface grating. Numerical simulations using two-dimensional (2D) Finite-Difference Time-Domain (FDTD) method verify that the deflection angle and focal length can be controlled easily by changing the intensity of incident light, dynamically tunable on-axis and off-axis focusing effects can be achieved.  相似文献   

17.
Surface plasmon polaritons (SPPs) have sparked enormous interest on nanophotonics beyond the diffraction limit for their remarkable capabilities of subwavelength confinements and strong enhancements. Due to the inherent polarization sensitivity of the SPPs [transverse‐magnetic (TM) polarization], it is a great challenge to couple the s‐polarized free‐space light to the SPPs. Here, an ultrasmall defect aperture (<λ2/2) is designed to directionally couple both the p‐ and s‐polarized incident beams to the single SPP mode in a broad bandwidth, which is guided by a subwavelength plasmonic waveguide. Simulations show that hot spots emerge at the sharp corners of the defect aperture when the incident beams illuminate it from the back side. The strong radiative fields from the hot spots are directionally coupled to the SPP mode because of the symmetry breaking of the defect aperture. By adjusting the structural parameters, both the unidirectional and bidirectional SPP coupling from the two orthogonal linear‐polarization incident beams are experimentally demonstrated. The polarization‐free coupling of the SPPs is of importance in circuits for fully optical processing of information with a deep‐subwavelength footprint.

  相似文献   


18.
Employing the surface plasmon polaritons (SPPs), a kind of coupled metallic squareness ring waveguide structure is presented. Its properties has been analyzed with the finite different time domain method and the coupling length has been derived from the coupled mode theory. It is demonstrated that the SPPs excited by the light with different wavelength will come out from different output port due to different coupling length. By appropriately designing the structure, it can be utilized to realize some optics devices such as multiple-wavelength sorter and beam splitter. This will break through the diffraction limit of traditional optical devices.  相似文献   

19.
We report the experimental and theoretical study of the dispersive behavior of surface plasmon polaritons (SPPs) on cylindrical metal surfaces in the terahertz frequency range. Time-domain measurements of terahertz SPPs propagating on metal wires reveal a unique structure that is inconsistent with a simple extrapolation of the high frequency portion of the dispersion diagram for SPPs on a planar metal surface, and also distinct from that of SPPs on metal nanowires observed at visible and near-infrared frequencies. The results are consistent with a numerical solution of Maxwell's equations, showing that the dispersive behavior of SPPs on a cylindrical metal surface at terahertz frequencies is quite different from that of SPPs on a flat surface. These findings indicate the increasing importance of skin effects for SPPs in the terahertz range, as well as the enhancement of such effects on curved surfaces.  相似文献   

20.
Chiral surface plasmon polaritons (SPPs) can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Images of chiral SPPs on individual nanowires obtained from quantum dot fluorescence excited by the SPP evanescent field reveal the chirality predicted in our theoretical model. The handedness and spatial extent of the helical periods of the chiral SPPs depend on the input polarization angle and nanowire diameter as well as the dielectric environment. Chirality is preserved in the free-space output wave, making a metallic nanowire a broad bandwidth subwavelength source of circular polarized photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号