首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
The Tm3+/Er3+:NaGd(MoO4)2 crystal with dimensions of Φ22×30 mm3 was grown by Czochralski method. Polarized spectra and fluorescence lifetime for the 4I13/2(Er3+)→4I15/2(Er3+) transition at room temperature were investigated. Based on the Judd-Ofelt theory, the spontaneous transition probabilities, the fluorescent branching ratios and the radiative lifetimes were calculated. The fluorescence lifetime was measured to be 1.81 ms. The detailed excited-transition mechanism with 800 nm radiation is also discussed.  相似文献   

2.
Preparation and optical properties of Lu2O3/Eu3+ nanocrystals embedded in silica gel glass are described. The structure of the obtained ceramics was determined by XRD and transmission electron microscopy. It was found that with increasing sintering temperature the Lu2O3/Eu3+ nanocrystallites underwent transformation into monoclinic Lu2Si2O7 nanocrystallites. The fluorescence properties were investigated as a function of thermal treatment of the samples. It was found that after sintering at 1250 °C the fluorescence lifetime increased to 1.5 ms at room temperature. The material studied in this work exhibits a very high intensity of fluorescence with potentials for display application.  相似文献   

3.
The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4 dB/cm at 633 nm have been obtained before post-annealing. The samples, when pumped at 980 nm yielded a broad photoluminescence spectrum (FWHM∼50 nm) centred at 1534 nm, corresponding to 4I13/2-4I15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4 ms was achieved, yielding promising results for compact waveguide amplifiers.  相似文献   

4.
The green up-conversion fluorescence of Er3+ ions doped in an nonlinear optical ZnO-Nb2O5-TeO2 glass was observed by using 800 nm excitation from a regenerative femtosecond (fs) Ti:Sapphire laser. The detailed analysis on two fluorescence lines at 526 nm (2H11/2-4I15/2) and 548 nm (4S3/2-4I15/2) revealed the fs laser heating of the multi-component TeO2-based glass, which was possibly due to its nonlinear absorption of the host glass via the imaginary part of the third-order optical susceptibility (χ(3)). The result was compared with that of a Er3+-doped aluminosilicate glass under the same irradiation condition. When the fs laser was irradiated to the multicomponent TeO2-based glass in the power density of 150 TW/cm2, the laser spot was heated up to ∼520 K, which however was still less than the glass transition temperature (Tg=688 K). This technique provides a useful sensing method of laser spot temperature even inside transparent materials.  相似文献   

5.
The Ce3+ ion was introduced into Er3+ doped TeO2-GeO2-Nb2O5-Li2O (TGNL) glass to improve the 1.5 μm fluorescence characteristics. As increasing of Ce3+ concentration, the lifetime of Er3+:4I11/2 level is shortened form 360 to 225 μs, while the Er3+:4I13/2 level remains unchanged. Accordingly, the upconversion fluorescence (blue, green and red) was quenched. Improved 1.5 μm emission is obtained and the reason is ascribed to the increase of nonradiative rate between the 4I11/2 and 4I13/2 level of the Er3+ ions.  相似文献   

6.
We studied the spectroscopic characteristics of telluride glass with the host composition (0.85)TeO2-(0.15)WO3, containing 0.25 and 1.0 mol% thulium oxide (Tm2O3). By analyzing the absorption spectra with the Judd-Ofelt theory, the average radiative lifetimes of 305±7.5 μs and 1.95±0.02 ms were determined for the 3F4 and 3H4 levels, respectively. Measured fluorescence lifetime of the 3F4 level decreased from 218 to 51 μs for the 0.25 and 1.0 mol% Tm2O3 doped samples, respectively, indicating the effect of boosted non-radiative decay at higher doping concentrations. A similar trend was observed for the 3H4 level, where the fluorescence lifetime decreased from 1.86 ms to 350 μs at these concentrations. The quenching of the 1460 nm (3F43H4) emission in favor of the 1800 nm (3H43H6) emission due to cross relaxation was further evident in the fluorescence spectra of the samples. The calculated stimulated emission cross sections (3.73±0.1×10−21 cm2 at 1460 nm and 6.57±0.07×10−21 cm2 at 1808 nm) reveal the potential importance of the Tm3+:(0.85)TeO2-(0.15)WO3 glass for applications in fiber-optic amplifiers and fiber lasers.  相似文献   

7.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

8.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

9.
The fluorescence property of xTbF3-BaF2-AlF3-GeO2+ySmF3 (x=0.01-40 mol%, y=0-5 wt%) glasses were investigated. The enhancement of Sm3+ fluorescence was recognized in the presence of Tb3+. Increasing Tb3+ content, the emission color changed from green to orange. When the intensity of fluorescence at 540 nm originated from Tb3+ is compared with that at 600 nm originated from Sm3+, the information about the concentration quenching of Tb3+ and Sm3+ was obtained. From these results, rare earth ions were dispersed identically in the glasses. After heating to 673 K or cooling to 77 K, the emission color of 20TbF3-20BaF2-10AlF3-50GeO2/mol%+0.05 wt% SmF3 glass was reversibly changed from orange to green. In addition, while the emission from 10TbF3-20BaF2-10AlF3-60GeO2+0.01 wt% SmF3 glass was green, its crystallized sample, prepared by annealing at 1073 K, exhibited an orange emission due to Sm3+ at room temperature.  相似文献   

10.
X-ray photoelectron spectroscopy was applied to study the hydroxylation of α-Al2O3 (0 0 0 1) surfaces and the stability of surface OH groups. The evolution of interfacial chemistry of the α-Al2O3 (0 0 0 1) surfaces and metal/α-Al2O3 (0 0 0 1) interfaces are well illustrated via modifications of the surface O1s spectra. Clean hydroxylated surfaces are obtained through water- and oxygen plasma treatment at room temperature. The surface OH groups of the hydroxylated surface are very sensitive to electron beam illumination, Ar+ sputtering, UHV heating, and adsorption of reactive metals. The transformation of a hydroxylated surface to an Al-terminated surface occurs by high temperature annealing or Al deposition.  相似文献   

11.
The B2O3 component was introduced into Er3+/Ce3+ co-doped TeO2-ZnO-Na2O-Nb2O5 glass to improve energy transfer rate of Er3+:4I11/2→Ce3+:2F5/2 phonon-assisted cross-relaxation process. With the 6 mol% substitution of B2O3 for TeO2, the energy transfer rate increased from 1300 to 1831 s−1 and the fluorescence intensity increased by about 13.4%. However, the more B2O3 substitution in the same glass system reduced the quantum efficiency of Er3+:4I13/24I15/2 transition due to the higher OH group concentration. The results show that an appropriate amount of B2O3 component can be used to improve the phonon-assisted energy transfer rate and enhance 1.53 μm fluorescence emission by increasing the phonon energy of host glass. The effect of B2O3 on the energy transfer process, the lifetimes of the 4I11/2 and 4I13/2 levels, and the upconversion emission have also been investigated.  相似文献   

12.
Highly Er3+-doped fluoride glass ceramics planar waveguides containing LaF3 nanocrystals have been fabricated by physical vapor deposition (PVD). The solubility of Er3+ in the segregated nanocrystals can reach 30 mol% which is much larger than the value found in LaF3-oxide glass ceramics. A quantitative analysis of the photoluminescence of the 1.54 μm emission band of Er3+ ions has demonstrated that erbium ions are partitioned in both crystals and vitreous phase. The short lifetime (2.2 ms) measured for erbium incorporated in LaF3 crystal lattice is a consequence of concentration quenching while the lifetime is close to 10 ms in the glassy phase. The emission bandwidth has been found to be greater than that of the precursor glass (71 nm at the half-height width). The high Er3+ concentration and spectral width could make this nanostructured fluoride material suitable for planar amplifier in the C telecommunication band.  相似文献   

13.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

14.
Lead bismuth arsenate glasses mixed with different concentrations of WO3 (ranging from 0 to 6.0 mol%) were synthesized. Differential thermal analysis (DTA), optical absorption, ESR and IR spectral studies have been carried out. The results of DTA have indicated that there is a gradual decrease in the resistance of the glass against devitrification with increase in the concentration of WO3 upto 4.0 mol%.The optical absorption spectra of these glasses exhibited a relatively broad band peaking at about 880 nm identified due to dxydx2y2 transition of W5+ ions; this band is observed to be more intense in the spectrum of glass containing 4.0 mol% of WO3. Further, two prominent kinks attributed to 3P01S0, 1D2 transitions of Bi3+ ions have also been located in the absorption spectra. The ESR spectra of these glasses recorded at room temperature exhibited an asymmetric signal at g∼1.71 and gll∼1.61. The intensity of the signal is observed to be maximal for the spectrum of the glass W4. The quantitative analysis of optical absorption and ESR spectral studies have indicated that there is a maximum reduction of tungsten ions from W6+ state to W5+ state in the glass containing 4.0 mol% of WO3. The IR spectral studies have indicated that there is a increasing degree of disorder in the glass network with increase in the concentration of WO3 upto 4.0 mol%.  相似文献   

15.
Series Pr0.5Sr0.5MnO3 (PSMO) films of thickness ranging from 20 to 400 nm were epitaxially grown on (0 0 1)-oriented LaAlO3 using pulsed laser deposition method. The biaxial compressive strain effect on phase transition of the films was systematically investigated by both electrical and magnetic measurements. The 60 nm film shows a ferromagnetic metal to antiferromagnetic insulator (FMM-AFI) transition at a temperature of ∼190 K. Such a FMM-AFI transition is depressed as the films become thicker, and finally disappears in the strain-relaxed situation. On the other hand, the Curie temperature is remarkably enhanced (∼50 °C) when the film thickness increases from 60 to 400 nm. These results may yield the possibility to modulate the phase transitions by varying the structural strain.  相似文献   

16.
Inorganic-organic hybrid electrolytes were prepared by the mechanochemical method using the Li+ ion conductive 70Li2S·30P2S5 glass and various alkanediols. Local structure of the prepared electrolytes was analyzed by FT-IR and Raman spectroscopy. The effects of the proportion and chain length of alkanediols on conductivity of the hybrid electrolytes were investigated. The hybrid electrolyte with 2 mol.% of 1,4-butanediol exhibited the conductivity of 9.7 × 10− 5 S cm− 1 at room temperature and the unity of lithium ion transference number. The use of alkanediols with shorter chain length was effective in increasing conductivity of hybrid electrolytes. The electrolyte using ethyleneglycol showed the highest conductivity of 1.1 × 10− 4 S cm− 1 at room temperature. Lowering glass transition temperature by incorporation of alkanediols is responsible for the enhancement of conductivity of hybrid electrolytes.  相似文献   

17.
Nonradiative decay of 4I13/24I15/2 transition of Er3+ has been investigated in a series of oxide glasses. For Er3+-doped glass samples, the Judd-Ofelt analysis on absorption spectra was performed and the fluorescence lifetime was determined by extrapolating to zero Er3+ concentration limit. Infrared spectra were measured in order to investigate the influence of OH groups in different glasses. The effects of glass matrix on the decay rate were discussed from the viewpoint of phonon energy, variations of effective fields, and OH groups. Compared to other glasses, phosphate glass presents low quantum efficiency and large nonradiative decay rate due to its high phonon energy and hygroscopic behavior.  相似文献   

18.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

19.
High quality Tm-doped YAlO3 (Tm:YAlO3) single crystals were obtained along crystallographic b-axis by the Czochralski technique. Optical absorption and fluorescence spectra for Tm3+ in YAlO3 crystals were investigated at room temperature. Based on Judd-Ofelt approach, the intensity parameters Ωt (t = 2, 4, 6) of Tm:YAlO3 were calculated to be Ω2 = 0.93 × 10−20  cm2, Ω4 = 2.23 × 10−20 cm2, and Ω6 = 1.12 × 10−20 cm2. The spectral parameters such as experimental and theoretical oscillator strengths, radiative transition probabilities, radiative lifetime and the fluorescence branching ratio were also obtained. All results indicate that Tm:YAlO3 is a potential candidate for compact, efficient mid-infrared lasers with laser diode pumping.  相似文献   

20.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号