首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotationally resolved vibronic bands in the forbidden electronic transition of the cumulene carbene C3H2 have been observed in the gas phase by cavity ring down absorption spectroscopy through a supersonic planar plasma with allene as precursor. The band detected in the 16 223 cm−1 region is a result of vibronic interaction and is assigned to a combination of a1 and b2 vibrations with a frequency around 2250 cm−1. Another vibronic band near 15 810 cm−1 has an unusual rotational structure because the Ka = 0-1 subband is absent. It is assigned to a combination of a1 and b1 vibrations, ∼1850 cm−1, which borrow intensity from the near lying state due to a-type Coriolis coupling. A rotational analysis using a conventional Hamiltonian for an asymmetric top molecule yields molecular constants for the vibrational excited levels of the Ã1A2 state, which were used for the determination of the geometry. The stronger transition of C3H2, measured in a neon matrix in the 16 161-24 802 cm−1 range, was not detected. The reason for this is a short lifetime of the state, leading to line broadening.  相似文献   

2.
The effects of temperature and pressure on the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 + O2 reaction have been investigated at temperatures from 298 to 378 K by directly monitoring the C6H5C2H2O2 radical in the visible region by cavity ringdown spectrometry (CRDS). The rate constant for the C6H5C2H2 + O2 association and that for fragmentation of C6H5C2H2O2 were found to be k1 (C6H5C2H2 + O2 → C6H5C2H2O2) = (3.20 ± 1.19) × 1011 exp(+760/T) cm3 mol−1 s−1 and k2 (C6H5C2H2 O2 → C6H5CHO + HCO) = (1.68 ± 0.13) × 104 s−1, respectively. Additional kinetic measurements by pulsed laser photolysis/mass spectrometry show that C6H5CHO was produced in the C6H5C2H2 + O2 reaction as predicted and the formation of C6H5CHO from the decomposition of C6H5C2H2O2 is temperature-independent, consistent with the CRDS experimental data.  相似文献   

3.
The inelastic neutron scattering spectra of C2H2 and C2D2 adsorbed on a Ag+ exchanged 13X zeolite (0–800 cm?1) and of C2H2 on the Na+ form (0–300 cm?1) have been obtained. For the Na-13X system no distinct vibrational modes were observed, however for the Ag-13X systems the low frequency intramolecular modes of the adsorbed gas and some of the vibrations of the adsorbed gas relative to the surface have been assigned. From the deuteration shifts it appears that C2H2 and C2D2, adsorbed on Ag-13X, are non-linear.  相似文献   

4.
The pressure broadening and shift rates of the rubidium D2 absorption line 52S1/2→52P3/2 (780.24 nm) with CH4, C2H6, C3H8, n-C4H10, and He were measured for pressures ≤80 Torr using high-resolution laser spectroscopy. The broadening rates γB for CH4, C2H6, C3H8, n-C4H10, and He are 28.0, 28.1, 30.5, 31.3, and 20.3 (MHz/Torr), respectively. The corresponding shift rates γS are −8.4, −8.8, −9.7, −10.0, and 0.39 (MHz/Torr), respectively. The measured rates of Rb for the hydrocarbon buffer gas series of this study are also compared to the theoretically calculated rates of a purely attractive van der Waals difference potential. Good agreement is found to exist between measured and theoretical rates.  相似文献   

5.
D.R. Mullins 《Surface science》2006,600(13):2718-2725
A dysprosium oxide thin film was deposited on Ru(0 0 0 1) by vapor depositing Dy in 2 × 10−7 torr O2 while the Ru was at 700 K. The film was ca. 5 nm thick and produced a p(1.4 × 1.4) LEED pattern relative to the Ru(0 0 0 1) substrate. The adsorption and reaction of CO and C2H4 adsorbed on Rh supported on the Dy2O3 film were studied by TPD and SXPS. The CO initially reacted with loosely bound oxygen in the substrate to produce CO2. After the loosely bound oxygen was removed, the CO adsorbed non-dissociatively in a manner similar to what is seen on Rh(1 1 1). C2H4 adsorbed on the Rh particles and underwent progressive dehydrogenation to produce H2 during TPD. The C from the C2H4 reacted with the O in Dy2O3 to produce CO. CO dissociation on the Rh particles could be promoted by treating the Dy2O3 with C2H4 before CO exposure.  相似文献   

6.
The infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) has been recorded with an unapodized resolution of 0.004 cm−1 in the wavenumber range of 1340-1460 cm−1 using the Fourier transform technique. By assigning and fitting a total of 870 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation, three rotational and five quartic centrifugal distortion constants for the upper state (v12 = 1) were determined for the first time. The rms deviation of the fit was 0.00044 cm−1 which is close to the experimental precision of the absorption lines. The A-type ν12 band centred at 1400.762811 ± 0.000041 cm−1was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.20928 ±  0.00002 μÅ2.  相似文献   

7.
The absorption spectrum of 12C2H2 has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the spectral region 10 140-10 600 cm−1, where three absorption bands were previously observed by Fourier transform spectroscopy. Thirteen bands starting from the vibrational ground state could be detected and rotationally analyzed. All corresponding excited vibrational levels could be assigned using the polyad model (M. I. El Idrissi, J. Liévin, A. Campargue, and M. Herman, J. Chem. Phys.110, 2074-2086 (1999)). The assignment procedure is detailed and relative intensity features are discussed.  相似文献   

8.
The absorption spectra of C6H6 and C6D6 in the liquid phase have been studied near 340 nm. The absorption spectrophotometric mounting was a sequential double-beam attachment with linear response to energy on scanning of the spectrum before the exit slit and an electronic device which gives directly either the absorbance or the integrated absorbance of a transition and, consequently, its oscillator strength.The oscillator strength measured for the band of C6H6 is 8×10?8, which corresponds to a dipole moment of 2.4×10?3 Debye; this value is of the same order as a theoretical value calculated by Tsubomura and Mulliken (3.8×10?3 Debye) for a transition between states 3F and 3A of an oxygen-benzene pair. This agreement corroborates the hypothetical existence of such a transition.The first vibrational band is at 28553 cm?1 for C6H6; this band is not observed in the vapor or solid phase. It corresponds probably to the transition 0-0, which is considered in the literature to be near 29500 cm?1. The isotopic shift measured for this first band is 164 cm?1. The vibrational frequencies are, respectively, 910 cm?1 for C6H6 and 889 cm?1 for C6D6.  相似文献   

9.
A comparative theoretical study of the (potential) interstellar molecules C12H and HC11N has been carried out, making use of the coupled cluster variant CCSD(T) in conjunction with large basis sets comprising up to 715 contracted Gaussian-type orbitals. The ground-state rotational constants of C12H and C12D are predicted to be 174.11 and 170.32 MHz, respectively. The corresponding quartic centrifugal distortion constant of C12H is estimated to be 0.26 Hz, to be compared with an experimental value of 0.24 Hz for HC11N. Most of the total infrared intensity of C12H isotopomers concentrates in one or two bands around 2000 cm−1. The total IR intensity exceeds 13 000 km mol−1 and is thus about 20 times larger than for HC11 N isotopomers. The bending vibrations of C12H, HC11N and their deuterated species are analysed by means of mass plots.  相似文献   

10.
The ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass were investigated using a femtosecond optical Kerr shutter (OKS) at wavelength of 800 nm. The nonlinear response time of this Bi2O3-doped glass was measured to be <90 fs. The nonlinear refractive-index n2 was estimated to be 1.6 × 10−14 cm2/W. Measurements for the dependence of Kerr signals on the polarization angle between the pump and probe beams showed that the Kerr signals induced by 30-fs pulse laser arose mainly from the photoinduced birefringence effect.  相似文献   

11.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

12.
Electronic spectra of a series of weakly bound clusters consisting of argon (Arn, n=1-4) bound to the butadiyne cation, C4H2+, have been recorded in the visible range from 440 to 520 nm by photodissociation. The C4H2+ fragment signal was recorded as a function of the laser wavelength during excitation of the AX electronic transition. The observed transitions were assigned to the band origin of the cationic complexes and to vibronic bands involving excitation of the ν3 and ν7 vibrational modes of the C4H2+ moiety, as well as combination bands of these modes. Comparison of the photodissociation spectra of the various clusters reveals a small blue shift, 25 cm−1 of the band maxima relative to the corresponding transitions reported from gas phase spectra of the bare C4H2+ cation. The magnitude of the blue shift of each band increases with successive Ar solvation up to n=3. Furthermore, each band becomes increasingly broadened towards the red with the addition of Ar atoms due to an increasing number of unresolved transitions involving excited intermolecular modes.  相似文献   

13.
Ethylene (ethene, H2C=CH2) is a naturally occurring compound in ambient air that affects atmospheric chemistry and global climate. The C2H4 spectrum is available in databases only for the 1000 and 3000 cm−1 ranges.In this work, the ethylene absorption spectrum was measured in the 6030-6250 cm−1 range with the use of a high resolution Bruker IFS 125HR Fourier-spectrometer and a two-channel opto-acoustic spectrometer with a diode laser. As a secondary standard of wavelengths, the methane absorption spectrum was used in both cases.A preliminary analysis was realized thanks to the tensorial formalism developed by the Dijon group that is implemented in the XTDS software package [39]. We considered the two combination bands ν5+ν9 and ν5+ν11 as an interacting dyad. Parameters for the ν9/ν11 dyad were fitted simultaneously from a re-analysis of previously recorded supersonic expansion jet FTIR data, while parameters for the v5=1 Raman level were taken from literature. More than 600 lines could be assigned in the 6030-6250 cm−1 region (and also 682 in the 2950-3150 cm−1 region) and effective Hamiltonian parameters were fitted, including Coriolis interaction parameters. The dyad features are globally quite well reproduced, even if there are still problems at high J values.  相似文献   

14.
Pristine and Au-covered molecular films have been analyzed by ToF-SIMS (TRIFT™), using 15 keV Ga+ (FEI) and 15 keV C60+ (Ionoptika) primary ion sources. The use of C60+ leads to an enormous yield enhancement for gold clusters, especially when the amount of gold is low (2 nmol/cm2), i.e. a situation of relatively small nanoparticles well separated in space. It also allows us to extend significantly the traditional mass range of static SIMS. Under 15 keV C60+ ion bombardment, a series of clusters up to a mass of about 20,000 Da (Au100: 19,700 Da) is detected. This large yield increase is attributed to the hydrocarbon matrix (low-atomic mass), because the yield increase observed for thick metallic films (Ag, Au) is much lower. The additional yield enhancement factors provided by the Au metallization procedure for organic ions (MetA-SIMS) have been measured under C60+ bombardment. They reach a factor of 2 for the molecular ion and almost an order of magnitude for Irganox fragments such as C4H9+, C15H23O+ and C16H23O.  相似文献   

15.
The CO2-broadened water coefficients (half-widths, line shifts, and temperature dependence of the widths) are predicted using a fully complex Robert-Bonamy formulation for the 937 allowed and forbidden perpendicular type transitions of (000)-(000) between 200 and 900 cm−1 in order to facilitate atmospheric remote sensing of Mars and Venus. In addition, empirical Lorentz line widths and pressure-induced frequency-shifts of CO2-broadened H216O are obtained at room temperature for 257 perpendicular transitions of the (010)-(000) fundamental. For this, calibrated spectra recorded at 0.0054 cm−1 resolution are measured assuming Voigt line shapes. For transitions between 1287 and 1988 cm−1 with rotational quanta up to J = 13 and Ka = 6, the widths vary from 0.045 to 0.212 cm−1 atm−1 at 300 K; the pressure-shifts are quite large and range from −0.0386 to +0.0436 cm−1 atm−1. For the (010)-(000) band, the RMS and mean observed and calculated differences for CO2-broadened H2O half-widths are 12% and −1.9%, respectively, while the RMS and mean ratios of the observed and calculated pressure-induced shift coefficients are 1.6 and 0.79, respectively. For pairs of transitions involving Ka = 0 and 1, such as 20 2 ← 31 3 and 31 3 ← 20 2, both the calculated and observed pressure induced shifts in positions are opposite in sign and often similar in magnitude. The data are too limited to characterize vibrational dependencies of the widths, however.  相似文献   

16.
The effect of aromatic hydrocarbon (benzene, C6H6) addition on lattice parameters, microstructure, critical temperature (Tc), critical current density (Jc) of bulk MgB2 has been studied. In this work only 2 mol% C6H6 addition was found to be very effective in increasing the Jc values, while resulting in slight reduction of the Tc. Jc values of 2 mol% C6H6 added MgB2 bulks reached to 1.83×106 A/cm2 at 15 K and 0 T. Microstructural analyses suggest that Jc enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB2 grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the Tc by carbon addition. We note that our results show the advantages of C6H6 addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in Jc of MgB2, compared to un-doped samples.  相似文献   

17.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

18.
Microwave spectroscopy measurements and density functional theory calculations are reported for the cyclopentadienyl cycloheptatrienyl titanium complex, C5H5TiC7H7. Rotational transition frequencies for this symmetric-top complex were measured in the 4-13 GHz range using a Flygare-Balle-type pulsed beam spectrometer. The spectroscopic constants obtained for the normal C5H548TiC7H7 isotopomer are B = 771.78907(38), DJ = 0.0000295(41), and DJK = 0.001584(73) MHz. The quadrupole hyperfine splittings for C5H547TiC7H7 were clearly observed and the measured constants are B = 771.79024(32) MHz, DJ = 0.0000395(33), DJK = 0.001646(24), and eQqaa = 8.193(40) MHz. Analysis of the experimental and theoretical rotational constants indicates that the η7-C7H7Ti and η5-C5H5Ti bond lengths in the gas phase are about 0.02 Å longer than those reported for the solid-state X-ray structure. The calculated Ti-C bond lengths are shorter for the C7H7 ligand (r(Ti-C) = 2.21 Å) than for the C5H5 ligand (r(Ti-C) = 2.34 Å), and the C7H7 H atoms are displaced 0.15 Å out of the C7 plane, toward the Ti atom.  相似文献   

19.
Rotational analyses are reported for a number of newly-discovered vibrational levels of the S1-trans1Au) state of C2H2. These levels are combinations where the Franck-Condon active and vibrational modes are excited together with the low-lying bending vibrations, and . The structures of the bands are complicated by strong a- and b-axis Coriolis coupling, as well as Darling-Dennison resonance for those bands that involve overtones of the bending vibrations. The most interesting result is the strong anharmonicity in the combinations of (trans bend, ag) and (in-plane cis bend, bu). This anharmonicity presumably represents the approach of the molecule to the trans-cis isomerization barrier, where ab initio results have predicted the transition state to be half-linear, corresponding to simultaneous excitation of and . The anharmonicity also causes difficulty in the least squares fitting of some of the polyads, because the simple model of Coriolis coupling and Darling-Dennison resonance starts to break down. The effective Darling-Dennison parameter, K4466, is found to increase rapidly with excitation of , while many small centrifugal distortion terms have had to be included in the least squares fits in order to reproduce the rotational structure correctly. Fermi resonances become important where the K-structures of different polyads overlap, as happens with the 2131B1 and 31B3 polyads (B = 4 or 6). The aim of this work is to establish the detailed vibrational level structure of the S1-trans state in order to search for possible S1-cis (1A2) levels. This work, along with results from other workers, identifies at least one K sub-level of every single vibrational level expected up to a vibrational energy of 3500 cm−1.  相似文献   

20.
The absolute line intensities of the Fermi triad 2003i-00001 (i = 1, 2, 3) of 12C16O2 and 13C16O2 isotopic species of carbon dioxide were retrieved from Fourier-transform spectra recorded at Doppler limited resolution in the region 9200-9700 cm−1. The accuracy of the line intensity determination is estimated to be better than 15% for most lines. The vibrational transition dipole moments squared and Herman-Wallis coefficients have been determined. The global fittings of the observed line intensities within the framework of the effective operators method have been performed. The fitting results reproduce the data within experimental uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号