首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

2.
Lin Zhao  Zhonghua Su  Yong Hao 《Optik》2013,124(24):6574-6576
Aiming at the requirement of high birefringence, a new kind of photonic crystal fiber (PCF) with octagonal and squarely lattice is proposed. In this structure, squarely lattices are added in the inner layer to obtain high birefringence. Birefringence and dispersion as a function of wavelength and size of PCF are analyzed by using Finite Element Method (FEM). Simulation results show that this kind of PCF exhibits high birefringence with a magnitude of 10?3, and one zero dispersion point is obtained simultaneously. In addition, the characteristics of PCF can be tuned by changing the size of fiber.  相似文献   

3.
In this paper, polarization properties and propagation characteristics of rectangular lattice photonic crystal fibers with elliptical air-holes are investigated by using the full-vector finite element method with anisotropic perfectly matched layers. Numerical results show that the birefringence of the fiber is induced by asymmetries of the cladding. Moreover, by adjusting its structure parameters, such as the hole pitch Λ, and the air-hole elliptical rate η, we find the optimized design parameters of the fiber with high birefringence (the order of 10−2) and limited polarization mode dispersion, operating in a single mode region at an appropriate wavelength range.  相似文献   

4.
In order to simply design a highly birefringent photonic crystal fiber (HB-PCF), we numerically simulated the correlation between the birefringence and the structural parameter of photonic crystal fiber with square-lattice or triangle-lattice air-holes by using multipole method. It is shown that the phase birefringence B(λ) and the group birefringence G(λ) can be modulated by the structure parameter of normalized wavelength λ/Λ and the relative air-hole size d/Λ. Numerical results show very high phase and group birefringence of the order of 10−2. The group birefringence becomes negative in the region where phase birefringence increases with an increase in normalized wavelength that does not appear in traditional highly birefringent fibers.  相似文献   

5.
We have theoretically investigated the birefringence and loss properties of the selectively liquid-filled photonic crystal fibers with the liquid asymmetrically infiltrated into one-line air holes along x-axis. A high birefringence value B = 1.74 × 10−3 can be achieved at λ = 1.55 μm. By varying the index of the infiltrating liquid, the birefringence values are shown to be well tuned. In addition, the confinement losses can be efficiently reduced by diminishing the number of liquid holes, which is quite useful for optical devices.  相似文献   

6.
A novel high birefringence polymer photonic crystal fiber (PCF) is proposed in this work. This PCF is composed of a polymer core and a cladding with elliptical air holes and squeezed triangular lattice. The high birefringence is introduced on the combined effect of elliptical air holes and the squeezed lattice. Our numerical results based on the supercell lattice method indicate that the birefringence can reach as high as 0.0018 at 650 nm wavelength with a properly designed cladding structure. We also analyze the dependence of the birefringence on structure parameters. And we design a PCF that has high and flattened birefringence.  相似文献   

7.
The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength λB shift a little towards short wavelengths and increase λB1 (the wavelength spacing between the main peak with Bragg resonance wavelength λB and the first side peak with wavelength λ1 and the coupling coefficient к of Bragg resonance. Moreover, when the ratio of air hole diameter (d) to pitch (Λ), d/Λ, is small, IAHs can suppress the cladding mode resonance. When d/Λ is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By comparing the transmission spectral characteristics of PCF-based fibre Bragg grating (FBG) with IAHs with those without IAHs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes.  相似文献   

8.
9.
The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sized cylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.  相似文献   

10.
In this paper, a novel double-clad photonic crystal fiber (DC-PCF) is proposed for achieving both high birefringence and low leakage loss. According to numerical simulation of the proposed PCF, the extraordinarily high birefringence (over 2×10−2) and low leakage loss of the order of 0.0001 dB/km over a large wavelength range are achieved simultaneously. Single-polarization single-mode (SPSM) operation with low leakage loss is also discussed and can be realized and optimized in the PCF by adopting suitable structure parameters.  相似文献   

11.
We theoretically study the optical torque on the layers in one-dimensional finite photonic crystal with birefringent defect layers. The fields in each layer are deduced by Berreman's 4 × 4-matrix method. We found out that the strong electromagnetic fields enhance both torque and force on the layers at defect mode. These investigations suggest an efficient method to construct the micro-motor driven by electromagnetic wave.  相似文献   

12.
In this paper, we have proposed a new type of quasi photonic crystal fiber (PCF) with a silicon nano crystal core. This structure can be used to sense aqueous analysis over a wavelength range of 1.00?µm to 3.00?µm. The properties of this structure are simulated using the vector-finite element method (VFEM) employing a boundary condition. The proposed model provides a significant effect of birefringence and a very high nonlinear coefficient for two different fundamental modes, which are obtained by adjusting the size of the silicon nano crystal filled ellipse core. This provides a high nonlinearity of 4.2?×?105 W?1Km?1 and a birefringence of ? 3.2?×?10?1 at the wavelengths 1.00?µm and 3.00?µm, respectively. Some others properties, such as the effective area, scattering loss, confinement loss, numerical aperture (NA)and power fraction are also analyzed to measure the performance of this structure. The proposed model is useful for sensing and biomedical imaging applications. The proposed structure may also find extensive applications in optical communication and sensor systems.  相似文献   

13.
A type of high birefringence dual-core photonic crystal fibers (DC-PCFs) with a central row of elliptical air holes have been proposed. The transverse electric field vector distributions of the two modes are evaluated, the birefringence or coupling length with the different parameters is numerically analyzed based on finite-element method. The numerical results show values for the birefringence of 8.247 × 10−3 (for wavelength, λ = 1.5 μm and lattice length, Λ = 1.3 μm), and for the coupling lengths about 3.1 mm and 2.6 mm (λ = 1.5 μm and Λ = 1.5 μm) to modes of x and y polarized, respectively. With the increasing of the air-filling fraction in proposed DC-PCF, the coupling length becomes longer and the birefringence becomes higher.  相似文献   

14.
A number of numerical and analytical methods with different complexity can be exploited to analyse fibre amplifiers. Conventional approaches make the refinement and design of the devices extremely time consuming, especially when several design parameters have to be simultaneously optimised to obtain the desired performance in terms of gain and noise figure.In order to tackle this issue, a method based on an artificial neural network to perform the refinement and design of erbium doped photonic crystal fibre amplifiers is proposed in this paper. The capability of the neural network to capture the nonlinear functional link among the physical and geometrical characteristics of the fibre amplifier and its gain and noise figure is exploited. In the refinement it is employed to determine the optimal values of the parameters maximising the gain. In the design, it is used to develop an inverse problem solver in order to determine the values of the parameters corresponding to the known values of gain.Numerical results show that the proposed approach finds the refinement/design parameters in good accordance with respect to the conventional one.  相似文献   

15.
By employing the liquid crystal refractive index changes induced by applied electric field, a novel terahertz polarization splitter with tunable the operating frequency and bandwidths has been proposed and theoretically analyzed. It possesses an extinction ratio as high as the polarization splitters based on the two-dimensional photonic crystal waveguides. These distinguished features ensure its important applications in the integrated optical systems.  相似文献   

16.
A highly birefringent ZBLAN photonic quasi-crystal fiber with a rectangular array of four relatively small circular air holes in the core region is proposed. Through optimizing fiber structure parameters using a full-vector finite-element method combined with perfectly matched layers boundary condition, its birefringence is up to 2.88 × 10−2 and the confinement losses of both polarized modes are less than 4.95 × 10−4 dB/m at 2 μm. To our knowledge, this is the first simulation study showing that a birefringence can be achieved with the order of 10−2 by all-circular-hole PQFs around 2 μm.  相似文献   

17.
In this paper, we present and propose a novel structure for improved birefringence and single-mode propagation condition photonic crystal fiber (PCF) in a broad range of wavelength. The birefringence of the fundamental mode and single mode property in such a PCF is numerically estimated by employing full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). The simulation results illustrate that we can achieve a high birefringence and perfect single-mode condition by employing silica-filled into one-line elliptical air holes parallel to x-axis and rotated by an angle. Obviously, the proposed PCF is quite useful for optical devices.  相似文献   

18.
The authors design an ultra-compact all-PC-integrated polarization beam splitter which is only composed of three waveguides: one input waveguide and two output waveguides. The input waveguide can support both TM and TE modes, but one of the two output waveguides can only support TM modes while the other can only support TE modes. So an incident beam will be separated into two different polarization beams which emerge from different output waveguides. By the simulation of finite-difference time-domain method, we know that the polarization beam splitter really works the way as we predict.  相似文献   

19.
In this paper, we investigate the dispersion and polarization properties of photonic crystal fiber with one ring or more rings of elliptical air-holes using plane-wave expansion (PWE) method. By introducing three rings of elliptical air-holes, PCF with ultra-low and ultra-flattened dispersion is designed and a total dispersion curve between ±0.5 ps/nm/km from 1315 to 1855 nm wavelength range is demonstrated. Furthermore, the polarization property of these elliptical air-hole-containing PCFs is analyzed and the variation of the birefringence with the area and ellipticity of the elliptical air-holes are discussed.  相似文献   

20.
Hong Jun Shen  Qing Lan Zhang 《Optik》2011,122(13):1174-1178
We report a low-loss photonic crystal slab waveguide formed by deforming the innermost circle air holes in the conventional photonic crystal slab waveguide into elliptical ones. We obtain the photonic bands and group index of guided modes in this photonic crystal waveguide by guided-mode expansion method and investigate the dependence of photonic bands and group index of guided modes on the parameters of the innermost elliptical air holes. The group velocity and group velocity dispersion of this waveguide strongly depend on the innermost elliptical air holes. Photonic crystal slab waveguide with the optimum innermost elliptical air holes possesses a wider single mode region below the light line, in which light can easily propagate without intrinsic loss. At the same time, the guided mode supported by this waveguide has nearly constant group velocity and vanishing group velocity dispersion in a 3-5 nm bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号