首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
We report experimental data on the highly excited states of zinc in the energy range 74,625-75,740 cm−1 using two-step laser excitation scheme in conjunction with a thermionic diode ion detector. The 4s4p 3P1 inter-combination level at 32501.399 cm−1 was populated using a frequency doubled dye laser. The 4s5s 3S1 level at 53672.28 cm−1 gets populated from the ASE (amplified spontaneous emission) of the second step dye laser. The Rydberg series 4snp 3P2 (12 ? n ? 60), 4snp 1P1 (16 ? n ? 30) and parity forbidden transitions 4sns 3S1 (19 ? n ? 44) have been observed. A two parameter fit to excitation energies of the observed series yields the binding energy of the 4s5s 3S1 level as 22097.03 ± 0.03 cm−1 and consequently, the first ionization potential of zinc is determined as 75769.31 ± 0.05 cm−1, that is in excellent agreement with the earlier work.  相似文献   

2.
We present the first measurement on the resonantly enhanced three-photon excitation spectra of natural lithium using a Nd:YAG laser pumped dye laser in conjunction with a thermionic diode ion detector. Exploiting the linear and circular polarizations, the n2P3/2(8 ? n ? 11) and nf  2F7/2 (8 ? n ? 38) series have been observed via three-photon excitation from the ground state. The measured level energies reveal a dynamic shift from calculated values, which increases with an increase of the principal quantum number n. The ac stark shift and line broadening mechanisms are studied as a function of laser intensity. It is noted that the width increases and the line center shifts towards the higher energy side as the laser intensity is increased. The maximum observed shift for the 12f 2F7/2 line is 0.33 cm−1 corresponding to the laser intensity variation from 1.34 × 1012 W/m2 to 1.03 × 1013 W/m2, whereas its width increases from 0.36 cm−1 to 0.82 cm−1.  相似文献   

3.
The splitting of Λ-doubling in the 51Πg Rydberg state of Na2, which dissociates to Na(3s) + Na(4d), has been measured using the high-resolution cw optical-optical double resonance technique. The observed data are in the range of 0 ? v ? 22 and 11 ? J ? 83 with Λ-doubling revealed. A set of Dunham coefficients with Λ-doubling constants has been obtained from the experimental results. The splitting of Λ-doubling increases quadratically with the rotational quantum number J and weakly depends on the vibrational quantum number v. These splitting constants are much larger than those in the Na2B1Πu state, which dissociates to Na(3s) + Na(3p). This indicates that the splitting of Λ-doubling in the 51Πg state is affected by both the perturbations by adjacent Σ states and the L-uncoupling.  相似文献   

4.
The pure electric field level-crossing of mF Zeeman sublevels of hyperfine F levels at two-step laser excitation is described theoretically and studied experimentally for the nD3/2 states in Cs with n = 7, 9 and 10, by applying a diode laser in the first 6S1/2 → 6P3/2 step and a diode or dye laser for the second 6P3/2 → nD3/2 step. Level-crossing resonance signals are observed in the nD3/2 → 6P1/2 fluorescence. A theoretical model is presented to describe quantitatively the resonance signals by correlation analysis of the optical Bloch equations in the case when an atom simultaneously interacts with two laser fields in the presence of an external dc electric field. The simulations describe well the experimental signals. The tensor polarizabilities α2 (in ) are determined to be 7.45(20) × 104 for the 7D3/2 state and 1.183(35) × 106 for the 9D3/2 state; the electric field calibration is based on measurements of the 10D3/2 state, for which α2 is well established. The α2 value for the 7D3/2 state differs by ca. 15% from the existing experimentally measured value.  相似文献   

5.
A strong optogalvanic effect has been observed in a negative glow of a miniature neon discharge lamp using tunable pulse dye laser pumped by a copper vapor laser. A comparative study on temporal evolution of optogalvanic signal in a positive and negative dynamic resistance region of the discharge is described. Dye laser beam was tuned to various neon transitions 1si → 2pj (Paschen notations) within 570-617 nm wavelength range. Anomalous behavior of optogalvanic signal was observed at 588.2 nm for (1s5 → 2p2) neon transition at low discharge current (<220 μA). This anomalous behavior is the attributes of damped oscillations of optogalvanic signal that correlate with negative dynamic resistance (dV/di < 0) of the discharge. Penning ionization at low discharge current and small energy mismatch is assumed to be the main cause of the negative dynamic resistance. Penning ionization process has been explained by resonantly ionizing energy transfer via collisions between neon buffer gas atoms in the lowest metastable state (1s5) and electrode sputtered atoms in ground state using their partial energy level diagram.  相似文献   

6.
Magnetoresistance and Hall coefficient of air-stable potassium-intercalated graphite sheets (hereafter abbreviated as K-PGS) were determined at room temperature. The magnitude of the magnetoresistance and the absolute value of Hall coefficient of K-PGS decreased with increasing potassium content of K-PGS, nK/nC. Two-carrier model was used for calculating carrier density and mobility. The electron density increased with increasing nK/nC: 3.07×1020 cm−3 (nK/nC=0.005), 5.67×1020 cm−3 (nK/nC=0.008) and 6.40×1020 cm−3 (nK/nC=0.011). The value of the electron density of K-PGS with nK/nC=0.011 (nominal composition KC91) was about 80% of the reported value, 7.8×1020 cm−3, for KC48 (nK/nC=0.021) prepared from HOPG (highly oriented pyrolytic graphite). The mobility decreased with increasing nK/nC: 2.11×103 cm2 V−1 s−1 (nK/nC=0.005), 1.42×103 cm2 V−1 s−1 (nK/nC=0.008) and 1.34×103 cm2 V−1 s−1 (nK/nC=0.011). The value of the mobility of K-PGS with nK/nC=0.011 was about 60% of the reported value (2300 cm2 V−1 s−1) for KC48 prepared from HOPG.  相似文献   

7.
We present new data on the even-parity Rydberg states of atomic thallium using two-step three-photon laser excitation technique in conjunction with a thermionic diode ion detector. Atoms are excited from the 6p 2P1/2 ground state to the 7p 2P1/2 intermediate state via two-photon excitation and subsequently promoted to the high lying ns 2 S1/2 and nd 2D3/2 Rydberg states. The first ionization potential of thallium is determined as 49,266.66(1) cm-1 using data for the ns 2 S1/2 (25 ≤ n ≤ 54) and nd 2D3/2 (24 ≤ n ≤ 65) Rydberg series. This value is believed to be more accurate because the contribution due to the hyperfine structure splitting of the 7p 2P1/2 state (0.07185 cm-1) is much smaller as compared to that of the 6p 2P1/2 ground state (0.711 cm-1).  相似文献   

8.
The far infrared and infrared spectra of formamide (HCONH2) have been recorded at high resolution (0.00125 cm−1) in the region of 90-1060 cm−1. Over 20,000 transitions from the out-of-plane NH2 wagging motion (n12 = 1 ← 0 fundamental, n12 = 2 ← 0 overtone, n12 = 2 ← 1 difference bands), torsion (n11 = 1 ← 0 bands), and out-of-phase NCO/NH2 bend (n9 = 1 ← 0 bands) have been assigned. Molecular parameters have been obtained for the ground state and the unperturbed n12 = 1 state. The least-squares fit calculations were completed with the microwave data available in the literature. The complicated resonance system between the n12 = 2, n11 = 1, and n9 = 1 states has been investigated carefully. Thus, we have been able to verify almost all resonances (avoided crossing) existing in the region J, K investigated. In the coupled Hamiltonian used for the fit, all Watson’s reduced parameters, including the octic ones and 16 Coriolis coupling parameters were taken into account. The rms deviation obtained from the fit was 0.000247 cm−1.  相似文献   

9.
Apparent molar adiabatic compressibilities (K?, s) of glycine, L-alanine, L-valine, and L-leucine have been determined in aqueous and mixed aqueous solutions of lactose (2 to 6 mass%) at T = (293.15, 298.15, 303.15, and 308.15) K. From these data partial molar adiabatic compressibilities at infinite dilution (K?, s0) have been evaluated to calculate corresponding transfer function. The transfer partial molar adiabatic compressibilities at infinite dilution (ΔK?, s0) are found to be positive. The decrease in the magnitude of transfer partial molar adiabatic compressibilities from glycine to L-leucine indicates the dominance of hydrophobic-hydrophobic interactions between the increasing side chains of amino acids. Also, the contributions of NH3+COO , and CH2 groups have been calculated by the linear correlation of K?, s0 with number of carbon atoms in the alkyl chain of amino acids.  相似文献   

10.
Photoluminescence (PL) with the bandwidth of 45 nm (1523-1568 nm at the level of 3 dB) was observed in amorphous Er2O3 films grown on to the quartz substrate by pulsed laser ablation of erbium oxide stoichiometric target. Optical transmission spectrum has been fitted to Swanepoel formula to determine the dispersion of refractive index and to extract resonance absorption peaks at 980 and 1535 nm. The maximum gain coefficient of 800 dB/cm at 1535 nm was estimated using McCumber theory and experimental spectrum of the resonance absorption. In 5.7 mm-long waveguide amplifier a theory predicts the spectral gain of 20 dB with 1.4 dB peak-to-peak flatness in the bandwidth of 31 nm (1532-1563 nm) when 73% of Er3+ ions are excited from the ground state to the 4I13/2 laser level. Strong broadband PL at room temperature and inherently flat spectral gain promise Er2O3 films for ultra-short high-gain optical waveguide amplifiers and integrated light circuits.  相似文献   

11.
We have examined the effect of weak DC electric field (2-20 V/cm) complimented by foreign gas collisions on the bound J = 2 even-parity 5snd 1D2 Rydberg states of neutral strontium. We use resonant two-photon transverse excitation, employing a narrow bandwidth tunable dye laser and an atomic jet in a heatpipe setup with ionization detection. In this paper we report certain anomalies in the observed spectra covering principal quantum number range n = 27-42 indicating a frequency shift reversal with nearly quadratic dependence on the field strength above an anti-resonance region. Furthermore, we have observed the emergence of highly localized doubly-excited 4d2 states, including a remarkably broad perturber with large angular momentum, uncovering orbital contraction effect. This non-Rydberg excitation, which intrudes upon the two-photon spectrum with large energy overlap is due to single-photon excitations from the 5s5p 1P1 resonance level following molecular dissociation of the Sr2 dimers suitably governed by binary atomic collisions. Our study which involves laser excitation complimented by electric field and collisions using inexpensive home-made setup opens up the possibilities for a new class of experiments, with considerable simplicity in the choice of excitation schemes for both Rydberg and non-Rydberg transitions, to reach states lying at high energies which cannot otherwise be accessed from the ground state due to parity and selection rules, while allowing one to probe localization properties of atomic wave functions.  相似文献   

12.
A detailed investigation of the electro-optical switching parameters of an antiferroelectric liquid crystal (S)-(+)-4-(1-methylheptyloxycarbonyl) phenyl 4′-(6-octanoyloxyhex-1-oxy) biphenyl-4-carboxylate (abbreviated as S-7H6Bi) has been carried out. S-7H6Bi has paraelectric (SmA?) and ferroelectric (SmC?) phases in addition to antiferroelectric (SmC?A) phase. Switching parameters viz. spontaneous polarization and switching time were determined by polarization reversal method. The spontaneous polarization (Ps) is found to be highly temperature dependent and decreases with temperature. The maximum value of Ps is found to be ∼90 nC/cm2 whereas the switching time (ts) is found to be of the order 1-2 ms. The temperature dependent torsional viscosity (γt) is of the order 10 Pa sec. It increases with decrease in temperature.  相似文献   

13.
Transitions between the spin-rotational levels of the 12CH radical in the v = 1 level of the X2Π state have been studied by the technique of laser magnetic resonance at far-infrared wavelengths. The data have been combined with a measurement of lambda-doubling transition frequencies at 7 GHz to determine an improved set of molecular parameters for CH in the v = 1 level. The parameters provide information on the effects of vibrational excitation on the structural properties of CH. Accurate predictions of the transition frequencies between the low-lying levels of the radical in the absence of a magnetic field have also been made.Small inconsistencies in the least-squares fit of the laser magnetic resonance data prompted re-measurement of three far-infrared laser frequencies, the 122.5 μm line of CH2F2 pumped by 9R(22), the 122.5 μm line of CH2F2 pumped by 9P(8) and the 554.4 μm line of CH2CF2 pumped by 10P(14). The new measurements differ by as much as 3.8 MHz from those made previously and are more accurate; they also remove the inconsistencies in the fit. The re-measured frequencies of the two 122.5 μm lines are identical within experimental error which suggests that the far-infrared lasing transition is the same, namely the rR23(32) transition in the v9=1 level of CH2F2.  相似文献   

14.
Nanocrystalline PZT thick films (1 mm square and over 10 μm thick) directly deposited onto stainless-steel substrates (PZT/SUS) by aerosol deposition (AD) technique and then annealed using focused laser beam with a fiber laser to suppress thermal damage to the back sides of the PZT/SUS and substrate near the film edge and to retain the dielectric and/or ferroelectric properties of the PZT/SUS. Compared with CO2 laser annealing, fiber laser annealing suppressed thermal damage to the substrate. Compared with PZT/SUS annealed at 600 °C using an electric furnace, PZT/SUS annealed at 600 °C using a fiber laser showed superior properties, namely, dielectric constant ? > 1200 at a frequency of 100 Hz, remanent polarization Pr > 30 μC/cm2, and coercive field strength Ec < 50 kV/cm at a frequency of 10 Hz. Furthermore, the grain growth for the PZT/SUS formed by AD technique and annealed by fiber laser irradiation was occurred within the laser spot size.  相似文献   

15.
The absorption spectrum of acetylene-d has been observed at high resolution between 6470 and 6630 cm−1 using an external cavity diode laser. Three cold bands have been observed: the strong 2ν1 band, the weaker ν1 + ν2 + 2ν5 band, and the (ν1 + ν3 + ν5)1 band, which gains its intensity through Coriolis resonance with 2ν1. Centers of unblended lines are determined with an accuracy of approximately 10 MHz.  相似文献   

16.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

17.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

18.
The v3 = 1 ← 0 (out-of-phase stretching vibration) transition wavenumbers of gas-phase NCO have been measured, in many cases with sub-Doppler resolution, by mid-infrared laser magnetic resonance (LMR) spectroscopy. In addition to the fundamental transition from the 2Π ground vibronic state, hot bands from the v2 = 1 2Σ and 2Δ and from the v2 = 2 2Φ vibronic states were detected and analyzed. The 2Σ vibronic level, with a spin-orbit coupling only partly quenched by the Renner-Teller effect, is characterised by complex and rapid tuning of energies in the magnetic field. This is the first successful analysis of magnetic resonance spectra for non-unique Renner-Teller vibronic states. The new LMR transitions were combined with data from previous studies and analysed, using an effective Hamiltonian in a 40-parameter fit to 660 transitions and combination differences. Several new coupling parameters are required, having magnitudes generally consistent with predictions from standard vibration-rotation theory.  相似文献   

19.
Impact broadening and shifts of Ba transitions to parity forbidden Rydberg states have been measured using two-photon laser spectroscopy techniques. Broadening and shift rates for the 6sns 1S0 (10 < n < 19) and 6snd 1D2 (8 < n < 26) levels due to thermal collisional interactions with Xe, Kr and Ar as perturber gases are plotted. Perturbations due to configuration interactions are discussed.  相似文献   

20.
The energy distribution profile of the interface states (Nss) of Al/TiO2/p-Si (MIS) structures prepared using the sol-gel method was obtained from the forward bias current-voltage (I-V) characteristics by taking into account both the bias dependence of the effective barrier height (?e) and series resistance (Rs) at room temperature. The main electrical parameters of the MIS structure such as ideality factor (n), zero-bias barrier height (?b0) and average series resistance values were found to be 1.69, 0.519 eV and 659 Ω, respectively. This high value of n was attributed to the presence of an interfacial insulator layer at the Al/p-Si interface and the density of interface states (Nss) localized at the Si/TiO2 interface. The values of Nss localized at the Si/TiO2 interface were found with and without the Rs at 0.25-Ev in the range between 8.4×1013 and 4.9×1013 eV−1 cm−2. In addition, the frequency dependence of capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the structures have been investigated by taking into account the effect of Nss and Rs at room temperature. It can be found out that the measured C and G/ω are strongly dependent on bias voltage and frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号