首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new data on the even-parity Rydberg states of atomic thallium using two-step three-photon laser excitation technique in conjunction with a thermionic diode ion detector. Atoms are excited from the 6p 2P1/2 ground state to the 7p 2P1/2 intermediate state via two-photon excitation and subsequently promoted to the high lying ns 2 S1/2 and nd 2D3/2 Rydberg states. The first ionization potential of thallium is determined as 49,266.66(1) cm-1 using data for the ns 2 S1/2 (25 ≤ n ≤ 54) and nd 2D3/2 (24 ≤ n ≤ 65) Rydberg series. This value is believed to be more accurate because the contribution due to the hyperfine structure splitting of the 7p 2P1/2 state (0.07185 cm-1) is much smaller as compared to that of the 6p 2P1/2 ground state (0.711 cm-1).  相似文献   

2.
The spectrum of excitation of Rydberg states of thallium atoms has been investigated using a collimated atomic beam in a two-step isotope selective laser scheme 62P1/2 → 62D3/2 → Tl** in the presence of an electric field with a strength of up to 1.5 kV/cm near the level 16F5/2. The optical transitions 6D3/2 → 18D3/2 and 6D3/2 → 16G7/2, which were induced by an external electric field and dipole-forbidden, have been studied experimentally. The values for the scalar polarizabilities (in units сm–1/(kV/сm)2) α0(16F5/2) = 3.71 ± 0.3, α0(18D3/2) = 11.70 ± 0.25, and α0(16G7/2) = 44.1 ± 0.9, which are compared with the calculated one, have been obtained. The new values of energy parameters for the states 18D3/2 and 16G7/2 have been determined.  相似文献   

3.
Visible superfluorescence at 629.977 nm is observed in europium atom with very high optical conversion efficiency on the transition 5d6p 10F7/2 → 5d6s 10D7/2. The peak intensity of fluorescence varies as square of the number of atoms in the excited state (N), which shows the superfluorescence character of the transition. The ratio of average superfluorescence power to excitation laser power is observed to be ∼15% in the forward direction.  相似文献   

4.
Upconversion (UC) luminescence in monodisperse NaYF4:Yb3+/Tb3+ nanocrystals was observed under diode laser excitation of 970 nm, which were synthesized by a hydrothermal method. UC emissions at 380, 413, 436 nm and at 488, 542, 584, 620 nm arise from transitions 5D3(5G6) → 7FJ(J = 6, 5, 4) and 5D4 → 7FJ(J = 6, 5, 4, 3) of Tb3+ ions, respectively. UC mechanisms are proposed based on spectral, kinetic, decay time measurements, and pump power dependence analyses. Blue, green and red emissions originate from the same long-lived (milliseconds) upper 5D4 state, which promises the potential applications of these monodisperse Yb3+/Tb3+-codoped NaYF4 nanocrystals in the field of photonics, lasers and biomedicine.  相似文献   

5.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

6.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride glass when excited by a 975 nm diode laser was studied in this paper. One typical ultraviolet upconversion luminescence lines positioned at 362.3 nm was found. It can be attributed to the five-photon upconversion luminescence transition of 1D2 → 3H6. Several visible upconversion luminescence lines at 451.1 nm, (477.9 nm, 462.5 nm), 648.7 nm, (680.5 nm, 699.5 nm) and (777.5 nm, 800.7 nm) were found also, which results from the fluorescence transitions of five-photon 1D2 → 3F4, three-photon 1G4 → 3H6, three-photon 1G4 → 3F4, two-photon 3F3 → 3H6 and two-photon 3H4 → 3H6 of Tm3+ ion, respectively. The theoretical analysis suggests that the upconversion mechanism of the 362.3 nm 1D2 → 3H6 upconversion luminescence is the cross energy transfer of {3H4(Tm3+) → 3F4(Tm3+), 1G4(Tm3+) → 1D2(Tm3+)} and {1G4(Tm3+) → 3F4(Tm3+), 3H4(Tm3+) → 1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results from the sequential energy transfer {2F5/2(Yb3+) → 2F7/2(Yb3+), 3H4(Tm3+) → 1G4(Tm3+)} and {2F5/2(Yb3+) → 2F7/2(Yb3+), 3F4(Tm3+) → 3F2(Tm3+)} from Yb3+ ions to Tm3+ions, respectively.  相似文献   

7.
In a discharged supersonic jet of Cl2, transitions of the D′ 2g(3P2)-A3Π(2u) system for 35Cl2 were observed directly by laser induced fluorescence spectroscopy. By a discharge in Cl2, the Cl2 molecules were populated into the A′ state, which is a metastable and optically forbidden state, from the state. An ultraviolet laser radiation excites the molecules to the D′ ion-pair state. A set of Dunham parameters for the A′ state is determined from a global least-squares fitting for 59 vibronic bands with v″ = 0-7. In the fitting, the previously reported data, T(v) and B(v) for the v = 14 and 15 bands of the A′ state [T. Ishiwata, A. Ishiguro, K. Obi, J. Mol. Spectrosc. 147 (1991) 300-320], were included. Y00 = 57295.723(5) cm−1 of the D′ state [J.-H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147 (1991) 334-345] was also included in the global fitting in order to determine the absolute position of the A′ state. The determined parameters of the A′ state are Y00 = 17171.506(14), Y10 = 255.915(85), Y20 = −4.465(70), Y30 = −8.7(23) × 10−2, Y40 = 6.3(35) × 10−3, Y50 = −4.9(26) × 10−4, Y60 = 1.43(69) × 10−5, Y01 = 0.16282(15), Y11 = −2.363(68) × 10−3, Y21 = −5.01(93) × 10−5, and Y31 = −3.01(36) × 10−6 (in cm−1 and one standard deviations of the fit in parentheses). The absolute position of the A′ state is determined with good accuracy.  相似文献   

8.
We present measurements of the linear Stark effect on the 4I15/2 → 4I13/2 transition in an Er3+-doped proton-exchanged LiNbO3 crystalline waveguide and an Er3+-doped silicate fiber. The measurements were made using spectral hole burning techniques at temperatures below 4 K. We measured an effective Stark coefficient (Δμeχ)/(h) = 25 ± 1 kHz/V cm−1 in the crystalline waveguide and  kHz/V cm−1 in the silicate fiber. These results confirm the potential of erbium-doped waveguides for quantum state storage based on controlled reversible inhomogeneous broadening.  相似文献   

9.
We present first measurements on the resonance enhanced three-photon excitation in thallium, using a Nd:YAG laser pumped dye laser in conjunction with a thermionic diode ion detector. The even-parity 6s2ns2S1/2 (15 ? n ? 31) and nd 2D5/2 (13 ? n ? 42) Rydberg states have been observed. The measured level energies reveal a dynamic shift from the photoabsorption values, which is decreasing with increasing n, while the asymmetry in the line profile is observed to be increasing with increasing n. In addition, an autoionising level (sp24P3/2) adjacent to the ionization threshold has been observed and quantitatively analyzed using the Fano’s photoionization cross-section relation for an isolated autoionising resonance.  相似文献   

10.
Hiroyuki Kizaki 《Surface science》2007,601(18):3956-3960
Photon stimulated ion desorption (PSID) from methyl ester terminated self-assembled monolayer (MHDA-SAM, HS(CH2)15COOCH3) and methyl mercaptoacetate (MA, HSCH2COOCH3) on Ag has been investigated using soft X-ray in the C and O K-edge regions. In MHDA-SAM on Ag, site-selective ion desorption has been clearly observed at resonant core excitations of C1s, O1s(OCH3) → σ(OCH3) and O1s(OCH3) → σ(COCH3). Ion intensity in MA on Ag is obviously reduced for (n = 1-3) at C1s, O1s(OCH3) → σ(OCH3) excitations, and no site-selective reaction at O1s(OCH3) → σ(COCH3) excitations has been observed. These reactions may be influenced by configurational difference of reactive sites. It is suggested that surface effects on the selective reaction due to positioning methyl ester group near the surface plays an important role.  相似文献   

11.
The nonmodulated and wavelength-modulated reflection spectra of CuGaS2 crystals for the polarization EIIc of 10 K are studied. The states n = 1, 2 and 3 of the excitons Γ4 (A-excitons) and n = 1, n = 2 of B- and C-excitons are found. The nonmodulated absorption spectra for the polarization Ec at 10 K have been studied. The states n = 1, 2 and 3 of Γ5 excitons are found. The main parameters of the A (Γ4, Γ5) and B, C exciton series at the energies of the longitudinal and transverse excitons Γ4 for the states n = 1 and n = 2, the effective masses of electrons and holes are determined. The photoluminescence peaks were observed at n = 3 and n = 4 of the excitons Γ5 in the luminescence spectra excited by the line 4880 Å of Ar+ laser. In the luminescence spectra the interference is found.  相似文献   

12.
Tb-doped SrSi2O2N2 phosphors with promising luminescent properties were synthesized by the conventional solid-state reaction method, characterized by powder X-ray diffraction and studied by photoluminescence excitation and emission spectra. The synthesized materials exhibited a weak blue emission and a strong green emission in the region of 400-470 nm and 480-650 nm, which are attributed to 5D37Fj (j=5, 4, 3) and 5D47Fj (j=6, 5, 4, 3) transitions of Tb3+, respectively. The green emission from 5D47F5 at 543 nm showed the highest intensity under the optimized concentration of 0.1 mol, after which the quenching concentration became relevant. The quenching behavior of the emission of Tb3+ was explained by the cross-relaxation of its excited state.  相似文献   

13.
We report experimental rate coefficients for the energy-pooling collisions Cs(5D) + Cs(5D) → Cs(6S) + Cs(nl = 9D, 11S, 7F). In the experiment the Cs(5D) state was populated via photodissociation of Cs2 molecules using an argon-ion laser at wavelength 488.0 nm. We also consider the competing process 6P1/2 + 7S → 6S + (nl = 9D, 11S, 7F) that might also populate 9D, 11S and 7F. An intermodulation technique was used to select the fluorescence contributions due only to the process 6P1/2 + 7S → 6S + (nl = 9D, 11S, 7F). The excited atom (nlJ) density and spatial distribution were mapped by monitoring the absorption of a counterpropagating probe laser beam tuned to various transitions. The measured excited atom densities are combined with measured fluorescence ratios to yield rate coefficients for the energy-pooling collisions Cs(5D) + Cs(5D) → Cs(6S) + Cs(nl = 9D, 11S, 7F). The rate coefficients for nl = 9D, 11S, 7F are (4.1 ± 2.0) × 10−10 cm3 s−1, (1.6 ± 0.8) × 10−10 cm3 s−1 and (3.6 ± 1.8) × 10−10 cm3 s−1, respectively. The contributions to the rate coefficients from other energy transfer processes are also discussed.  相似文献   

14.
A luminescent material β-Na(Y1.5Na0.5)F6 doped with Tm3+ was synthesized by a solid-state reaction method for a steady phosphor of blue upconversion. Under the 671 nm laser excitation, the green emission band of 511 nm due to the 1D23H5 transition is obtained for the first time, while the ultraviolet emission band is also observed at 368 nm, associated with the 1D23H6 transition. Especially, a wide band of blue emissions is obtained at the wavelength region of 440-490 nm, originated mainly from the 1D23F4 (450 nm) and 1G43H6 (471-487 nm) transitions, which have potential application in tunable solid-state blue laser of Tm3+. The upconversion mechanism is explored in terms of the energy-level structures of Tm3+ ion and the power dependence of upconverted emission intensity, which is believed to be performed by excited-state absorption.  相似文献   

15.
The aim of this work was to provide a simple justification and applicability limits for the concept of effective Rabi frequency being related to an average atom-field interaction in MOT. We sampled 85Rb MOT with a weak probe beam tuned across the 5P3/2 (F′ = 4) → 5D5/2(F″ = 3, 4, 5) hyperfine transitions, while the 5S1/2(F = 3)  5P3/2(F′ = 4) transition was driven by the red-detuned trapping beam. The probe absorption spectra were registered for a number of detunings Δ and intensities P of the trapping beam. The Autler-Townes splitting δ of the clearly dominating F′ = 4 → F″ = 5 line was the subject of analysis. The character of the space-dependent interactions of atoms with MOT fields is of a complex nature, which brings the notion of the effective Rabi frequency for MOT into challenge. However, we argue that for the range of the typical values of P and Δ, it is justified to characterize MOT with an effective Rabi frequency Ω0eff, by using the intuitive formula , where is a mean scaling factor experimentally determined, basing on predictions of a straightforward 3-level model. We postulate that our simple procedure, providing both the value and the applicability limits of the approach, should be repeated with each new implementation of MOT (e.g., with trap beams realignment), which may change conditions experienced by cold atoms.  相似文献   

16.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

17.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

18.
Absorption and fluorescence spectra observed between 450 and 750 nm at 85 K and room temperature (300 K) are reported for Eu3+(4f6) in single-crystal Czochralski-grown garnet, Gd3Ga5O12 (GGG). The spectra represent transitions between the 2S+1LJ multiplets of the 4f6 electronic configuration of Eu3+ split by the crystal field of the garnet. In absorption, Eu3+ transitions are observed from the ground state, 7F0, and the first excited multiplet, 7F1, to multiplet manifolds 5D0, 5D1, and 5D2. The Stark splitting of the 7FJ multiplets (J=0-6) was determined by analyzing the fluorescence transitions from 5D0, 5D1, and 5D2 to 7FJ. The Eu3+ ions replace Gd3+ ions in sites of D2 symmetry in the lattice during crystal growth. Associated with each multiplet manifold are 2J+1 non-degenerate Stark levels characterized by one of four possible irreducible representations (irreps) assigned by an algorithm based on the selection rules for electric-dipole (ED) and magnetic-dipole (MD) transitions between Stark levels in D2 symmetry. The quasi-doublet in 5D1 was characterized by an analysis of the magneto-optical spectra obtained from the transitions observed between 5D1 and 7F1. A parameterized Hamiltonian defined to operate within the entire 4f6 electronic configuration of Eu3+ was used to model the experimental Stark levels and their irreps. The crystal-field parameters were determined through use of a Monte-Carlo method in which nine independent crystal-field parameters, were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental Stark levels is 5.9 cm−1. The choice of coordinate system, in which the nine are real and the crystal-field z-axis is parallel to the [0 0 1] crystal axis and perpendicular to the xy plane, is identical to the choice we used previously in analyzing the spectra of Er3+ and Ho3+ garnets.  相似文献   

19.
The two substates v4 = 20 (A1, 983.702 cm−1) and v4 = 2±2 (E, 986.622 cm−1) of the oblate symmetric top molecule, 14NF3, have been studied by high-resolution (2.5 × 10−3 cm−1) infrared spectroscopy of the overtones and 2ν4 − ν4 hot bands. Transitions of the overtone, the hot band, and the previously measured fundamental band were combined to yield 585 ground state combination differences differing in K by ±3, with Kmax = 36. Using the “loop-method,” a fit (standard deviation σ = 0.320 × 10−3 cm−1) provided a complete set of the hitherto not experimentally known axial ground state constants. In units of cm−1 these have the following values: . Upper state parameters were determined using a vibrationally isolated model. Considering l (2, 2) and l (2, −1) interactions between the v4 = 20 and v4 = 2±2 substates and effects accounting for the l (4, −2) interactions within the kl = −2 levels, 25 upper state parameters were obtained by fitting 2747 IR data (1842 transitions, 905 deduced energies, Jmax = 42, Kmax = 39) with σIR = 0.353 × 10−3 cm−1. Moreover, millimeter-wave spectroscopy furnished 86 transitions (Jmax = 16, Kmax = 13) measured on the v4 = 2 excited state. A merged fit, refining 24 parameters using the described model gave σIR = 0.365 × 10−3 cm−1 andσMMW = 0.855 × 10−6 cm−1 (26 kHz). The anharmonicity constants (in cm−1) are x44 = −0.84174 (2) and g44 =  + 0.73014 (1). In addition to this model, the D, Q, and L reductions of the rovibrational Hamiltonian were tested. Standard deviations σIR = 0.375 × 10−3 cm−1 and σMMW = 0.865 × 10−6 cm−1 were obtained for both D and L reductions, and σIR = 0.392 × 10−3 cm−1 and σMMW = 0.935 × 10−6 cm−1 for Q reduction. The unitary equivalence of the majority of the 18 tested relations between the derived parameters was satisfactorily fulfilled. This confirms that the v4 = 2 excited vibrational state can be considered in reasonable approximation to be isolated.  相似文献   

20.
The mechanism involved in the Tm3+(3F4)→Tb3+(7F0,1,2) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the 3F4 luminescence decay due to the Tm→Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from 3F4 can be completely quenched by 0.8 mol% of Tb3+. As a consequence, the 7F3 state of Tb3+ interacts with the 3H4 upper excited state of Tm3+ slighting decreasing its population. The effective amplification coefficient β(cm−1) that depends on the population density difference Δn=n(3H4)-n(3F4) involved in the optical transition of Tm3+ (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion Δn as a function of Tb3+ concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm−2. These calculations were performed using the experimental Tm→Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb3+ propitiates best population density inversion of Tm3+ maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号