首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The local structure of titanium pair centers in SrF2: Ti crystals is investigated using electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy. It is found that titanium pair centers with spin moment S=2 and tetragonal symmetry of the magnetic properties are formed in SrF2: Ti cubic crystals under certain growth conditions and during annealing. The tensor components of the fine and ligand hyperfine structures in the EPR and ENDOR spectra are determined. A model of the Ti+-Ti3+ paramagnetic dimer is proposed. This model provides an adequate interpretation of both the ferromagnetic nature of the exchange interaction and the observed displacements of four ligands in the first coordination sphere of titanium impurity ions in directions perpendicular to the impurity ion-ligand bonds.  相似文献   

2.
Angle-selection experiments of a spin soliton in randomly oriented ladder polydiacetylene were carried out by pulsed electron paramagnetic resonance (EPR) at W-band. EPR measurement using 94 GHz microwaves increased the difference in the resonance field due tog anisotropy of the spin soliton to allow the orientation dependence of transient nutation, electron nuclear double resonance (ENDOR) and spin relaxations to be investigated. The shape of theg anisotropy-resolved nutation spectrum was discussed on the basis of the EPR transition moments and the differences between spin relaxation times. Reliable assignments of hyperfine couplings to the β protons (Hβ) of the alkyl side chains were achieved with the support of W-band ENDOR measurements. No significant orientational dependence in theT 1 andT 2 processes was found in terms of isotropy of the Hβ-hyperfine interaction.  相似文献   

3.
The triplet states of several substituted porphyrins (Tetraphenylporphyrin (H2TPP), Zinc-Tetramethylporphyrin (ZnTMP), Octaethylporphyrin (H2OEP) and the Dication of H2TPP (H4TPP2+)) and two covalently linked dimers with H2TPP-subunits in disordered solid solution were studied by EPR and ENDOR at liquid helium temperature. The measurement yields theA zz component of the hyperfine tensors of all α-protons in the reference frame of the zero field splitting tensor. Dipolar and isotropic contributions toA zz are discussed and spin densities derived. The spin densities are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/S). One of the dimers shows indications of triplet energy transfer between the porphyrin subunits. The order of magnitude of the transfer rate is estimated to be 5 · 105 s?1.  相似文献   

4.
5.
ENDOR spectra of a series of carbon- and oxygen-centered radical adducts of 2-substituted DMPO-type nitrones are reported. They include the novel cyclic nitrones, 2-phenyl-5,5-dimethyl-pyrroline-N-oxide (2-Ph-5,5-M2PO), 2,5,5-trimethyl-l-pyrroline-N-oxide (2,5,5-M3PO), and 2-phenyl-3,3,5,5,-tetramethyl-l-pyrroline-N-oxide (2-Ph-3,3,5,5-M4PO). Electron paramagnetic resonance (EPR) was used to ascertain the nitrogen hyperfine splittings (hfs’s) while1H ENDOR was employed to determine the long-range (γ) hydrogen hfs’s. The magnitude of the nitrogen hfs combined with the numbers and sizes of the long-range γ-H hfs’s of spin adducts of these new spin traps are shown to help disclose the identities of various added radicals (or radical addends). It should be noted that the three new spin traps presented here are keto-nitrones not aldo-nitrones. Thus, there is alkyl (e.g. CH3) or aryl (e.g. C6H5) substitution at the 2-position of the pyrroline-N-oxide ring. This feature is part of our search for modified spin traps that yield spin adducts with greater stability.  相似文献   

6.
Recent progress in the investigation of the electronic structure of the shallow nitrogen (N) and phosphorus (P) donors in 3C–, 4H– and 6H–SiC is reviewed with focus on the applications of magnetic resonance including electron paramagnetic resonance (EPR) and other pulsed methods such as electron spin echo, pulsed electron nuclear double resonance (ENDOR), electron spin-echo envelope modulation and two-dimensional EPR. EPR and ENDOR studies of the 29Si and 13C hyperfine interactions of the shallow N donors and their spin localization in the lattice are discussed. The use of high-frequency EPR in combination with other pulsed magnetic resonance techniques for identification of low-temperature P-related centers in P-doped 3C–, 4H– and 6H–SiC and for determination of the valley–orbit splitting of the shallow N and P donors are presented and discussed.  相似文献   

7.
Pulse field-sweep EPR (PFSEPR) is developed as a low-power, microwave pulse technique to resolve hyperfine structure underlying inhomogeneously broadened EPR lines. PFSEPR arises from transfer of saturation due to spin state mixing from forbidden ΔmI ≠ 0 EPR transitions. We report its first use to resolve large copper hyperfine couplings which are unresolved by standard X-band EPR. As applied to copper, PFSEPR has better sensitivity than ENDOR with comparable spectral resolution. The details of energy levels and state mixing which account for PFSEPR transitions in these copper systems are developed here. PFSEPR transitions from stellacyanin provide hyperfine and quadrupole couplings in good agreement with those predicted by various EPR simulations and determined by ENDOR. Copper couplings from the CuA signal of cytochrome-c oxidase are comparable to previously published estimates, but PFSEPR suggests underlying state mixing of copper levels.  相似文献   

8.
Two different approaches for assigning electron nuclear double resonance (ENDOR) signals to their respectiveM s manifolds by a controlled generation of asymmetric ENDOR spectra, are described and applied to a number of systems. This assignment then allows a straightforward determination of the sign of the hyperfine coupling. Both approaches rely on a high thermal polarization that is easily achieved at high fields and low temperatures. For high-spin systems, such asS = 5/2 the assignment is afforded by the selective inversion of the | ?3/2〉 → | ?1/2〉 electron paramagnetic resonance (EPR) transition which is highly populated as compared to its symmetric counterpart, the |1/2〉 → |3/2〉 EPR transition, and therefore is easily identified. ForS = 1/2 the determination of the sign of the hyperfine coupling becomes possible when the cross- and nuclear-spin relaxation rates are much slower than the electron-spin relaxation rate and variable mixing time pulse ENDOR is used to measure the spectrum. Under these conditions the signals of theM s = 1/2 (α) manifold become negative when the mixing time is on order of the electron-spin relaxation time, whereas those of theM s =?1/2 (β) manifold remain positive. Under partial saturation of the nuclear transitions and short mixing time the opposite behavior is observed. Pulse W-band1H ENDOR experiments demonstrating these approaches were applied and the signs of the hyperfine couplings of the water ligands in Mn(H2O) 6 2+ , the Hα and Hβ histidine protons in the Cu(histidine)2 complex, the imidazole protons in Cu(imidazole) 4 2+ and the cysteine β-protons in nitrous oxide reductase were determined.  相似文献   

9.
Electron paramagnetic resonance (EPR) spectra of impurity Yb3+ ions (about 0.1 at.%) in mixed crystals BaF2(1-x) plus LaF3(x) have been investigated for different values of the concentrationx at a frequency of about 9.5 GHz by both continuous-wave (CW) EPR and electron spin echo methods. A spectrum of trigonal symmetry with a complex hyperfine structure is observed in “pure” BaF2:Yb3+ (x=0). Upon admixture of small amounts of LaF3 (x=0.001), additional EPR lines arise with intensities increasing with the increase ofx up to 0.005. These lines are attributed to trigonal centers including two rare-earth ions and two compensating fluorine ions. A further increase ofx results in a decrease of the total EPR spectrum intensity, and atx≥0.05 the CW resonance becomes practically unobservable. This may be due to the formation of rare-earth ion clusters with paramagnetic Yb3+ ions occurring in domains with a disordered structure of surroundings resulting in very broad EPR lines, which cannot be registered by CW EPR. Indeed, very broad (not less than 1 KG) EPR lines were observed by the electron spin echo method for concentrationsx<-0.02.  相似文献   

10.
The1H electron-nuclear double resonance (ENDOR) spectra in frozen buffer solutions of the reduced [2Fe?2S] clusters in adrenodoxin (Adx) and in the “Rieske” iron-sulfur protein (ISP) from the bovine mitochondrial bc1 complex were measured at low temperatures (5–20 K) and analyzed by spectra reconstruction. A single paramagnetic species with iron valence states (II) and (III) connected uniquely to the cluster irons was found in both proteins. For Adx, the experimental spectra from 23 field positions across the nearly axial (g max=2.0241,g int=1.9347, andg min=1.9331) electron paramagnetic resonance (EPR) spectrum were analyzed. Four larger hyperfine couplings were assigned to the cysteine β-protons near the Fe(III) ion. Transfer into the crystal structure showed that the Fe(III) ion was coordinated to the residues Cys55 and Cys92. The spin density was estimated as +1.60 for the Fe(III) and ?0.6 for the Fe(II) ion, respectively. Theg-tensor direction with respect to the cluster showed strong similarities with the earlier assignment inArthospira platensis ferredoxin (Canne C., Ebelshauser M., Gay E., Shergill J.K., Cammack R., Kappl R., Hüttermann J.: J. Biol. Inorg. Chem. 5, 514, 2000). An Adx mutant (T54A) exhibiting a change (70 mV) in redox potential showed no significant influence at the [2Fe?2S] cluster. The Rieske ISP was subjected to the same analysis. The ENDOR spectra from 35 field positions across the rhombic (g max=2.028,g int=1.891, andg min=1.757) EPR spectrum were simulated. Three major proton contributions were identified from the orientation behavior. Two were assigned to cysteine β-protons and one to a β-proton of His141. In contrast to Adx, the direction of theg max-component was found to lie roughly in the FeS-core plane and the largest proton coupling occurred alongg int. The spin population was estimated as about +1.6 for the oxidized and ?0.55 for the reduced iron.  相似文献   

11.
The role of the Cu(II) in the catalytic oxidation of CO over Cu/SnO2 with low Cu(II) content was studied by continuous wave EPR, electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectroscopes. Three methods were employed for introducing the copper: (i) by coprecipitation, (ii) impregnation onto SnO2 gel and (iii) impregnation onto calcined SnO2. Two types of Cu(II) species were identified in these calcined Cu/SnO2 materials. Those belonging to the first type, termed B and C, exhibit highly resolved EPR spectra with well defined EPR parameters and are located within the bulk of the oxide. The other group comprises a distribution of surface Cu(II) species with unresolved EPR features and are referred to as S. While the latter were readily reduced by CO the former required long exposures at high temperatures (> 673 K). The specific interactions of the different Cu(II) species with CO were investigated through the determination of the13C hyperfine coupling of enriched13CO. The ESEEM spectra of calcined samples, generated either by coprecipitation or impregnation, show after the adsorption of CO signals at the Larmor frequencies of117, 119Sn and13C and at twice these Larmor frequencies. Although these signals indicate that117, 119Sn and13C are in the close vicinity of Cu(II), they cannot provide the hyperfine couplings of these nuclei. This problem was overcome by the application of the HYSCORE experiment. The 2D HYSCORE spectra show well resolved cross peaks which provide the hyperfine interaction of these nuclei. Simulations of the HYSCORE spectra yield for117, 119Sn an isotropic hyperfine constant,a iso, of ±4.0 MHz and an anisotropic component,T ?, of ±2.0 MHz. Pulsed ENDOR spectra also showed117, 119Sn signals which agree with the above values. The13C cross peaks yielda iso=±1.0 MHz andT ?=±2.0 MHz. Similar C cross peaks were observed in spectra of calcined Cu/SnO2 after the adsorption of CO2. Based on the same hyperfine couplings in the samples exposed to13CO and13CO2 the signals were assigned to surface carbonate species generated by part of the Cu(II) S type species rather then by species B and the role of the Cu(II) in the oxidation process is discussed.  相似文献   

12.
The hyperthermophilic archaeonPyrococcus furiosus contains a four-Fe ferredoxin (Pf- Fd) that differs from most other 4Fe-Fd’s in that its [Fe4S4] cluster is anchored to protein by only three cysteinyl residues.Pf- Fd also is of interest because in its reduced form, [Fe4S4]+, the cluster exhibits bothS = 1/2 andS = 3/2 spin states. Addition of excess cyanide ion converts the cluster exclusively to anS = 1/2 state (g1 = 2.09, g2 = 1.95, g3 = 1.92), however dialysis restores the EPR signal of native reduced protein indicating that the cluster is not irreversibly altered by cyanide. Both the native protein and protein in the presence of excess cyanide ion (Pf- Fd 4Fe-CN) were investigated here using the techniques of electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy. In particular,Pf- Fd 4Fe-CN was investigated using13CN? and C15N? ligands.13C and15N ENDOR indicated that a single cyanide ion bound directly, with the cluster showing an unusually small contact interaction (aiso(13C)~ ?3 MHz, aiso(15N) ~ 0). This is in contrast to cyanide bound to monomeric low-spin Fe(III)-containing proteins such as transferrin and myoglobin, for which the13C hyperfine coupling has a large isotropic component (aiso(13C) ≈ ?30 MHz). This small contact interaction is not due to low spin density of Fe, as57Fe ENDOR of the singly and triply labeledPf- Fd 4FeCN isotopologs, [57FeFe3S4]+ and [Fe57Fe3S4]+, show hyperfine coupling characteristic for [Fe4S4]+ clusters, particularly for the Fe to which cyanide binds. Thus, the low spin density on13C is not due to low spin density on the Fe ion to which it binds. Further theoretical work is needed to explain the contrast between the strong electronic effect of cyanide ion binding with the low spin density on the ligand.  相似文献   

13.
Paramagnetic centers generated by swift heavy ion irradiation of LiF crystals could be identified as electrons trapped at regular anion vacancy sites (F centers). Well-resolved electron-nuclear double resonance (ENDOR) spectra resulting from the hyperfine interaction with 7Li and 19F nuclei located in six different shells could be recorded. In order to preserve the millimeter-sized crystals, a cavity-free setup was used for the ENDOR experiments at an electronic Larmor frequency of 240 GHz. Apparently even under conditions of extremely high local energy loss in the ion track, the local density of persistent F centers is still sufficiently low to prevent distortions of the ionic crystal. The spread of hyperfine coupling constants was less than 5 %. Neither in electron paramagnetic resonance (EPR) nor in ENDOR spectra there was evidence for different types of paramagnetic centers. When performing ENDOR by applying the radiofrequency pulse directly after the 3-pulse Mims-type microwave sequence, an anomalous ENDOR effect was observed. The observed “positive” and “negative” ENDOR response can be attributed to efficient hole and anti-hole formation in the inhomogeneously broadened EPR spectrum and can be used to determine the sign of hyperfine coupling constants.  相似文献   

14.
A novel method that allows the determination of absolute signs of hyperfine coupling constants in polarized radical pair (RP) pulse electron-nuclear double resonance (ENDOR) spectra is presented, The variable mixing time (VMT) ENDOR method used here leads to a separation of ENDOR transitions originating from different electron spin manifolds by employing their dependence on the time-dependent parameters of the pulse sequence. The simple kinetic model of the RP VMT ENDOR experiment shows very good agreement with the experiments performed on the P 700 .+ A 1 .- RP in photosystem I. This method relies on the selective excitation of absorptive or emissive lines of one radical in the RP EPR spectrum and therefore requires high spectral resolution. This condition was fulfilled for the system studied at the low-field edge of the RP EPR spectrum obtained at Q-band. The method presented here has a very high sensitivity and does not require any equipment additional to the one used for RP pulse ENDOR. The VMT ENDOR method offers the possibility for selective suppression of signals from different electron spin manifolds.  相似文献   

15.
The Na+-translocating nicotinamide adenine dinucleotide (NADH):quinine oxidoreductase (Na+–NQR) is a component of respiratory chain of various bacteria and it generates a redox-driven transmembrane electrochemical Na+ potential. It contains four different flavin prosthetic groups, including two flavin mononucleotide (FMN) residues covalently bound to the subunits NqrB and NqrC. Na+–NQR from Vibrio harveyi was poised at different redox potentials to prepare two samples, containing either both FMNNqrB and FMNNqrC or only FMNNqrB in a paramagnetic state. These two samples were comparatively studied using pulse electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron-electron double resonance (ELDOR) spectroscopy. The echo-detected EPR spectra and electron spin relaxation properties were very similar for flavin radicals in both samples. The splitting of the outer peaks in the proton ENDOR spectra, assigned to the C(8α) methyl protons, allows to identify both radicals as anionic flavosemiquinones. The mean interspin distance of 20.7 Å between these radicals was determined by pulse ELDOR experiment, which allows to estimate the edge-to-edge distance (r e) between these flavin centers as: 11.7 Å < r e < 20.7 Å. The direct electron transfer between FMNNqrB and FMNNqrC during the physiological turnover of the Na+–NQR complex is suggested.  相似文献   

16.
EPR spectra of the Er3+, Nd3+, and Ce3+ ions substituting for the Y3+ ion in the YAlO3 yttrium orthoaluminate lattice are studied. The EPR spectra of these rare-earth ions are described by a spin Hamiltonian of rhombic symmetry with an effective spin S=1/2. The principal values of the g tensors were determined from an analysis of the angular dependences of the EPR spectra. The orientation of the local magnetic axes of paramagnetic centers relative to the YAlO3 crystallographic directions are shown to depend on the actual rare-earth species. The EPR spectra exhibit a hyperfine structure due to the 167Er, 143Nd, and 145Nd odd isotopes, which permitted unambiguous identification of these spectra. The hyperfine coupling constants for the odd erbium and neodymium isotopes are determined.  相似文献   

17.
ENDOR studies on bis(dithiophosphato)copper(II) complexes magnetically diluted in the corresponding Pd(II) and Pt(II) host lattices performed with the use of the method of “polycrystalline ENDOR crystallography” are reported. In these samples well resolved local31P (Aiso ca. 29 MHz and Aaniso ca. 0.9 MHz) as wel1 as distant31P (A iso ca. 1.3 and 5.5 MHz and Aaniso ca. 0.2 and 0.4 MHz) and195Pt (Aiso ca. 3.1 MHz and Aaniso ca. 0.2 MHz) ENDOR transitions are recorded. It is shown that the directions of the main values of Aaniso for all local31P and distant31P and195Pt ENDOR transitions are parallel. Comparison of these results with those reported about the same complexes but diluted in other host lattices shows that there is no difference in the EPR and local31P ENDOR parameters thus suggesting that the structure of the paramagnetic complex remains unchanged. It is found that distant ENDOR transitions appear only in the case when the host lattice contains one molecule in the unit cell, i.e., when all molecules are parallel to each other. Using the obtained data from local and distant31P ENDOR transitions some structural features of Cu(dtp)2 as well as Pd(dtp)2 and Pt(dtp)2 complexes are found for the first time.  相似文献   

18.
High-frequency and -field electron paramagnetic resonance (HFEPR) has been used to study several complexes of high-spin manganese(III) (3d4,S = 2): [Mn(Me2dbm)X] and [Mn(OEP)X] (X = Cl?, Br?), where Me2dbm? is the anion of 4,4′-dimethyldibenzoylmethane and OEP2? is the dianion of 2,3,7,8,12,13,17,18-octaethylporphine. These non-Kramers (integer spin) systems are not EPR-active with conventional magnetic fields and microwave frequencies. However, use of fields up to 15 T in combination with multiple frequencies in the range of 95–550 GHz allows observation of richly detailed EPR spectra. Analysis of the field- and frequency-dependent HFEPR data allows accurate determination of the following spin Hamiltonian parameters for these complexes: [Mn(Me2dbm)Cl],D = ?2.45(3) cm?1; [Mn(Me2dbm)Br],D = ?1.40(2) cm?1; [Mn(OEP)Cl],D = ?2.40(1) cm?1; [Mn(OEP)Br],D = ?1.07(1) cm?1 (E ≈ 0, andg ≈ 2.0 in all cases). Comparison of structural data with the electronic parameters for these and related complexes shows quantitatively the effects of axial and equatorial ligation on the electronic structure of Mn(III). These high-spin complexes can be employed as building blocks in the construction of single-molecule magnets. Thus the accurate determination and understanding of the electronic properties, best obtainable by HFEPR, of these monomeric units is important in understanding and improving the properties of the polynuclear single-molecule magnets which can be formed from them.  相似文献   

19.
Porphycene is a structural isomer of porphyrin. The photoexcited triplet states of porphycene, 2,7,12,17-tetra-n-propylporphycene and 9,10,19,20-tetra-n-propylporphycene in disordered solid solution were studied by EPR and ENDOR. The ENDOR spectra yield the hyperfine tensor elementsA zz for each of the different groups of equivalent protons. The dipolar contribution toA zz is estimated and spin densities are derived from the isotropic contribution. They are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/SP and RHF-INDO/S).  相似文献   

20.
Although nearly 100 paramagnetic defects have been catalogued in diamond by spin Hamiltonian parameters measured by electron paramagnetic resonance (EPR), very few of these have been unambiguously associated with an atomic model. It has been necessary to use electron nuclear double resonance (ENDOR) to obtain enough information to make proper assignment of such models. The reason for the limitation of EPR, and the way in which ENDOR overcomes these limitations are discussed. The interpretation of hyperfine structure in terms of unpaired electrons in molecular orbitals, and of quadrupole interactions in terms of all electrons, paired and unpaired, as a source of information about molecular structure in diamond, is evaluated by reference to some well documented examples. The measurements so far made by ENDOR on defects in diamond are reviewed, and the salient contribution for the assignment of a model for each defect is explained. The details revealed by ENDOR considerably increase knowledge about defects, particularly those involving substitutional nitrogen atoms. This in turn helps in understanding the complex electron and atom, migration processes which go on under appropriate conditions of temperature and pressure, or optical excitation. The possibilities are discussed for using ENDOR to increase the number of well characterized centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号