首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation equilibrium of N2O4−NO2 has been measured in hexane, carbon tetrachloride and chloroform at different temperatures. The equilibrium constants at 298.15 K (25°C),K m (molality basis), are 3.5·10−5 in hexane, 5.9·10−6 in carbon tetrachloride and 5.3·10−6 in chloroform. The EPR technique has been used to quantify the NO2 radical. These data are compared with gas-phase and solution data of previous reports. The applicability of Hildebrand and Scatchard theory of solutions is also discussed and some thermodynamic properties are deduced, such as Henry’s N2O4 and NO2 constants in different solvents.  相似文献   

2.
The adsorption of NOx(x = 1, 2, 3) molecules on single-walled carbon nanotubes (SWCNTs) is investigated using first-principle calculations. Single NO, NO2 and NO3 molecules are found to physisorb on SWCNTs, but molecules can be chemisorbed in pairs on the top of carbon atoms at close sites of SWCNTs. The adsorption energy for pairs of NO or NO3 molecules is larger than for pairs of NO2 molecules. The local curvature is found to have a sizable effect on adsorption energies. The possibility of a surface reaction NO2 + NO2 → NO + NO3 is examined and the relative pathway and barrier is calculated. The results are discussed with reference to available experimental results.  相似文献   

3.
《Physics letters. A》2020,384(16):126332
Hydrogen-substituted graphdiyne (HsGDY) is a novel alkynyl carbon material with a structure similar to that of graphene. In this paper, the adsorption of four gas molecules (NO, NO2, NH3, and N2) on HsGDY and B-doped HsGDY (B-HsGDY) was studied using density functional theory. The results show that the adsorption of NO and NO2 on HsGDY and B-HsGDY is characterized by a larger charge transfer, stronger interaction, and higher adsorption energy compared with that of NH3 and N2. Based on the doping with B atoms, the adsorption energies of the gas molecules on HsGDY significantly improve, especially that of NO and NO2. The gas molecule adsorption on both HsGDY and B-HsGDY is physical adsorption and the adsorption selectivity is good and thus may be applied for gas-sensitive NO and NO2 materials.  相似文献   

4.
The spatial and surface chemical products and effectiveness of NOx removal (abbreviated deNOx) under the corona discharge action at atmospheric pressure were investigated. The influence of high-voltage electrode material on a discharge character and the heterogeneous influence of the electrode surface are also reported in the article. The qualitative analysis was performed using infrared absorption spectrometry. Special attention was paid to NO and NO2 calibration measurements.  相似文献   

5.
This work investigates the reactions of NO with eight different types of carbon particles: activated pinewood charcoal, activated charcoals doped with iron, nickel, copper or platinum nitrates, fullerene, carbon nanotubes and soot produced from a heavy duty diesel engine. For this mixtures of NO and argon were passed through a fixed bed of carbonaceous particles mixed with quartz sand, held at a temperature between 25 and 850 °C. The concentrations of CO, CO2, NO, NO2 and N2O in the off-gases were measured; the concentration of N2 was inferred by atomic balance. The balance on atomic oxygen closed well for all the materials studied. The results are discussed in terms of an elementary reaction mechanism; estimates are made of apparent activation energies for the overall reactions forming CO and CO2.  相似文献   

6.
(TPP)NO3的合成、表征与分子识别NO   总被引:1,自引:0,他引:1  
在氯仿与无水乙醇的混合溶剂(体积比为1:1)中,四苯基卟啉(TPP)与Ce(NO3)·6H2O混合反应后,得产物Ce(TPP)NO3. 通过紫外-可见光谱、红外光谱、荧光光谱、质谱、核磁共振氢谱的分析与表征,四苯基卟啉与铈原子以四齿方式进行配位,在同一个铈原子上还有一个硝酸根配位. 向Ce(TPP)NO3的二氯甲烷溶液中通入NO气体,NO可以配位在同一个铈原子上,得到新的配合物Ce(TPP)(NO)NO3,向此溶液中通入N2,金属卟啉配合物可以恢复为配合物Ce(TPP)NO3.  相似文献   

7.
A version of ortho-para diagnostics of water at room temperature, based on the combined use of optical and NMR spectroscopy of water dissolved in carbon tetrachloride in a monomeric form, is proposed. Within this study, the capabilities of spectral diagnostics of water with natural ortho-para composition (ortho/para = 3/1) were fully realized. An experimental technique for preparing large amounts of carbon tetrachloride dried to a high degree (water: CCl4 < 1: 105) was worked out. The results of successful NMR measurements of the ortho-isomer concentration will be published later.  相似文献   

8.
The influence of H2O on the adsorption behavior of NO or NO2 on a silver powder surface was studied by SERS and XPS at room temperature. Water vapor was found to be responsible for the adsorption of NO on the silver powder surface. When surface species such as Ag2O are present on the surface, some of the NO2 molecules are adsorbed on the surface species to produce NO-3, whereas NO molecules are adsorbed on a different site to produce NO-2.  相似文献   

9.
G. Lu  Dr. N. Miura  N. Yamazoe 《Ionics》1998,4(1-2):16-24
Stabilized zirconia-based electrochemical devices for which the sensing electrode was provided with a single-metal oxide were tested for NO and NO2 sensing properties at high temperature. Among the many single-metal oxides examined, WO3 was found to give the best sensing properties to NO and NO2 at 500–700°C. The EMF response of the WO3-attached device was linear to the logarithm of NO or NO2 concentration. The response and recovery kinetics were speedy. The device gave very small cross-sensitivities to H2, CO, CH4, CO2 and water vapor. The sensing mechanism involving mixed-potential was confirmed from the measurements of polarization curves.  相似文献   

10.
The chemisorption of NO on the carbon pretreated Rh{331} single crystal surface has been investigated by XPS, LEED and SIMS. The carbon overlayer was prepared by dehydrogenation of chemisorbed C2H4. Results of NO adsorption at room temperature show that surface carbon blocks adsorption sites that normally coordinate molecular NOADS and its dissociated products, NAds and OAds, as determined by comparing to experiments performed on clean Rh{331}. Heating the surface which contains NOAds, nAds, OAds and CAds, induces a series of chemical reactions starting with the dissociation of molecular NOAds. Above 400 K, the CAds and NAds atoms combine to form CN?. The formation of the latter species is confirmed by the temperature evolution of the Rh2CN+ and CN? SIMS ion yields. The CAds species also reacts with OAds to produce CO and/or CO2. These processes occur preferentially over the desorption of N2 and O2. In general, it is demonstrated that by using the XPS and SIMS methods, it is possible to identify the reaction species present on the surface at any given temperature and to unravel rather complex reaction pathways.  相似文献   

11.
This work reports an experimental and modeling study on the chemical kinetic interactions of NO with a multi-component gasoline surrogate, namely PACE-20, using a twin-piston rapid compression machine at a stochiometric fuel loading with 20% EGR (exhaust gas recirculation) by mass, pressures of 20 and 40 bar, and temperatures from 700 to 930 K. Five NO concentrations are investigated, namely 0, 20, 50, 70 and 150 ppm, where NO addition effects are characterized through changes in PACE-20 ignition reactivity and heat release characteristics. Experiments indicate that within the low-temperature regime, NO promotes low-temperature heat release rate and main ignition reactivity at low addition levels, with saturation or even inhibiting effects observed at >50 ppm NO addition, while within the NTC/intermediate-temperature regime, adding NO only promotes reactivity. A recently updated, detailed chemical kinetic model with chemistry specific to NOx/hydrocarbons interaction incorporated is used to simulate the experiments, and reasonable agreement is obtained. In-depth sensitivity and rate of production analyses are further performed. The results indicate that NO interacts with PACE-20 via two types of interaction: (a) direct interactions between NO and PACE-20 derivatives, primarily through NO+HO2↔NO2+OH and RO2+NO↔RO+NO2, and (b) indirect interactions between PACE-20 derivatives and NO2 produced from the direct interactions, primarily through R+NO2↔RO+NO. The observed NO inhibiting effect at low temperatures and 150 ppm NO addition is attributed to the lack of HO2 radicals to sustain NO consumption via NO+HO2↔NO2+OH, and the take-up of inhibiting pathways via RO2+NO↔RO+NO2. The results also indicate that even with the presence of multiple fuel components, NOx/hydrocarbons interactions are highly selective, and are mainly initiated by the interactions between NO and RO2 radicals from cyclopentane and ethanol, as well as between NO2 and R radicals from toluene, 1,2,4-trimethylbenzene and 1-hexene. Further studies on these interactive reactions are therefore highly recommended.  相似文献   

12.
The application of pulsed cavity ring-down spectroscopy has been demonstrated for the in situ quantitative determination of NO and NO2 in the exhaust of a diesel engine. NO absorption has been monitored at the transition from the Χ2Π ground state to the A2Σ+ state at 226 nm. For NO2, absorption bands in the spectral region from 438 nm to 450 nm were used. At the selected engine conditions, concentrations of 212±22 ppm and 29±4 ppm have been measured for NO and NO2, respectively, in good agreement with separate chemical exhaust gas analysis. The method is sensitive enough to meet the European Euro V standard directive on NOx emissions. This communication discusses the relatively simple setup needed for this type of measurement, the problems encountered, as well as the prospects for single-stroke, simultaneous measurements of both NO and NO2 at the sub-ppm level. Received: 30 November 2001 / Revised version: 18 February 2002 / Published online: 14 March 2002  相似文献   

13.
We present a multi-species mole fraction and temperature sensor for in situ exhaust gas diagnostic of internal combustion (IC) engines. The sensor is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) and incorporates four optical channels - two miniature White cells and two double-traversal cells - with base lengths of 6?cm. It has been demonstrated at a hot air test stand and in the exhaust manifold of a single-cylinder research engine, with measured temperatures of up to 1000?K. Stable operation was achieved with absorption lengths of up to 192?cm (test stand) and 97?cm (engine). Employing time-division multiplexed detection, six species were measured simultaneously in the engine exhaust, at wavelengths ranging from 1.4?µm to 5.2 µm: water vapor (H2O), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2) and nitric oxide (NO). The effective measurement rate was as high as 1?kHz, and cycle-to-cycle variations were clearly detected. We show the correlation of the air-fuel equivalence ratio with the spectroscopically measured mole fraction of each species. At a cycle-resolved rate, detection limits for the legally regulated species NO and NO2 were 1?ppm and 4?ppm, respectively. The sensor is intended to help improve the understanding of IC engine emission behavior during fast transients.  相似文献   

14.
Mieko Sato 《Surface science》1980,95(1):269-285
Nitric oxide adsorption on tungsten and nitric dioxide adsorption on tungsten have been investigated by the FEM method. When NO or NO2 adsorbs gradually on W at 300 K and at 80 K, the FEM patterns which appear at first are found to be similar to those which appear in N2 adsorption on W. In the case of NO adsorption on W at 80 K, with further exposure, no further change of the FEM patterns is observed. However, in the cases of NO adsorption on W at 300 K, NO2 adsorption on W at 300 K, and NO2 adsorption on W at 80 K, further changes of the FEM patterns are observed with further exposure, and the FEM pattern which is obtained at the saturated state is found to be similar to the FEM pattern which appears at the saturated state of O2 adsorption on W. From the above results it is suggested that NO and NO2 dissociate on W at 300 and at 80 K.  相似文献   

15.
ABSTRACT

Using density functional theory calculations, we investigate the gas sensing performance of B-, N-doped and BN-codoped C60 fullerenes towards NO and NO2 molecules. The calculated adsorption energies and net charge-transfer values indicate that NO and NO2 molecules have a stronger interaction with the BN-codoped fullerenes compared to the B- or N-doped ones. It is also found that the electronic properties of the BN-codoped C60 exhibit a larger sensitivity towards NO and NO2 molecules. An increase in the concentration of doped/co-doped B and N atoms tends to weaken the gas sensing ability of these systems.  相似文献   

16.
Catalytic ozonation is a promising method for simultaneous removal of NOx and Cl-VOCs, but needs to clarify their interaction mechanism and the influence of catalyst acidity. In this paper, the simultaneous catalytic ozonation of NO and dichloromethane (DCM) on Mn/H-ZSM-5 molecular sieve catalysts were investigated experimentally. Results show that the overall acidity, acid sites type and intensity have a significant impact on the degradation efficiency, the conversion path of Cl element, and the interaction of NO/DCM adsorption-degradation. Nevertheless, regardless of catalysts, NO could be preferentially oxidized by ozone to generate NO2 in co-ozonation process, which inhibited and even shielded DCM ozonation at O3/DCM ratio <1.7. In addition, the highly active oxidizing species such as NO3/N2O5, produced by the deep ozonation of NO2, exhibited a synergistic effect on the conversion of DCM and intermediates, which in turn weakened NO2 deep oxidation. Specifically, NO addition caused a general decrease in the HCl selectivity, and a slight increase in the CHCl3 selectivity of all samples, while the Cl2 selectivity was determined by the overall catalyst acidity. The samples with higher overall acidity exhibited lower activity for DCM degradation. In particular, for samples with the weak overall acidity but strong acid sites, the sum selectivity of HCl, Cl2, and CHCl3 was significantly improved under the interplay effect of NO, indicating that strong acidic sites were beneficial to the complete degradation of DCM. In-situ DRIFTS revealed that aldehydes and carboxylates were the key intermediates of DCM ozonation. In the co-ozonation, NO and its oxidation products (such as nitrates) could promote the formation and conversion of these intermediates, and further converted into CO and CO2 by the active oxidant from ozone. Finally, the interference of H2O and SO2 on the NO/DCM co-ozonation were revealed.  相似文献   

17.
The back-corona discharge has been successfully applied as a plasma source for decomposition of NO2 in the oxygen-free gas mixture of N2:NO2. The paper reports a first attempt to use back-corona discharge for noxious gas conversion. The preliminary results of laboratory experiments in a needle-to-plate reactor show that the De-NOx processes in back-corona discharge are similar to the dc streamer corona discharges generated in the same geometry. Both types of discharges convert NO2 to nitrogen, oxygen and also to N2O and NO. However, back-corona discharge produces less NO, and is more efficient energetically in NOx decomposition than the dc streamer corona discharge.  相似文献   

18.
Materials that contain a photocatalyst have a semi-permanent capacity for removing harmful gases from the ambient air. It is the purpose of this study to investigate the photocatalytic activity of commercial paints containing TiO2 nanoparticles towards NO and NO2. Experiments were carried out in a stainless steel (30 m-3) walk-in type environmental chamber (Indoortron), under “real world setting” conditions of temperature, relative humidity, irradiation and pollutant concentrations. Two types of nanoparticle TiO2-containing paints were tested for their depolluting properties: a mineral silicate paint and a water-based styrene acrylic paint. The results showed a significant effect of TiO2-materials in reducing NOx. It was found that up to 74% of NO and 27% of NO2 were photo-catalytically degraded by the mineral silicate paint, while degradation percentage using the styrene acrylic paint reached 91% and 71% for NO and NO2, respectively. The photo-catalytic rate of NO on the mineral and styrene acrylic paint was calculated to 0.11 μg m-2 s and 0.18 μg m-2 s, respectively, indicating higher photocatalytic performance of the organic based material. The effect of relative humidity (RH) was also investigated. An increase of RH from 20% to 50% inhibited the NOx photocatalysis on the surface of the samples. PACS 81.16.Hc; 81.65.Mq; 82.33.Tb; 82.50.Hp; 82.65.+r  相似文献   

19.
In this study, a bespoke single-stage swirl burner was used to experimentally investigate the effects of residence time on emissions from premixed ammonia-methane-air flames. The residence time was altered in two ways: by modifying the combustion chamber's length or by modifying the swirl number. Exhaust emissions of O2, CO2, CO, NO, NO2, and N2O were measured at an absolute pressure of 2 bar for equivalence ratios between 0.50 and 0.95 and ammonia fractions in the fuel blend between 0 and 100%. Spatial distributions of NO and OH radicals were also imaged using PLIF inside the combustion chamber at different heights above the nozzle. Data shows that increasing residence time can further advance chemical reactions, as evidenced by a reduction in O2 concentration in the exhaust. Increasing the swirl number reduces emissions of NO, NO2, and N2O more efficiently than tripling the chamber's length. However, a decrease in the combustion efficiency may be responsible for a fraction of this NOx reduction when the swirl number is increased for some equivalence ratios. NO emissions are not modified when the chamber's length is increased, which is consistent with the fact that the NO-LIF signal does not decay when the distance from the nozzle increases. Therefore, NO formation is somehow restricted to within the main reaction zone of the swirling flame, that is, the zone whose height does not exceed 60 mm for this burner. Conversely, tripling the chamber's length reduces the concentrations of NO2 and N2O. This reduction is not reflected in a measurable increase in NO concentration because NO is present in much larger quantities than NO2 and N2O in flames examined here. Consistent with the fact that OH promotes NO formation via fuel-NOx pathways, a positive correlation is found between NO- and OH-LIF intensities.  相似文献   

20.
Kinetics and equilibrium of the acid‐catalyzed disproportionation of cyclic nitroxyl radicals R2NO? to oxoammonium cations R2NO+ and hydroxylamines R2NOH is defined by redox and acid–base properties of these compounds. In a recent work (J. Phys. Org. Chem. 2014, 27, 114‐120), we showed that the kinetic stability of R2NO? in acidic media depends on the basicity of the nitroxyl group. Here, we examined the kinetics of the reverse comproportionation reaction of R2NO+ and R2NOH to R2NO? and found that increasing in –I‐effects of substituents greatly reduces the overall equilibrium constant of the reaction K4. This occurs because of both the increase of acidity constants of hydroxyammonium cations K3H+ and the difference between the reduction potentials of oxoammonium cations ER2NO+/R2NO? and nitroxyl radicals ER2NO?/R2NOH. pH dependences of reduction potentials of nitroxyl radicals to hydroxylamines E1/3Σ and bond dissociation energies D(O–H) for hydroxylamines R2NOH in water were determined. For a wide variety of piperidine‐ and pyrrolidine‐1‐oxyls values of pK3H+ and ER2NO+/R2NO? correlate with each other, as well as with the equilibrium constants K4 and the inductive substituent constants σI. The correlations obtained allow prediction of the acid–base and redox characteristics of redox triads R2NO?–R2NO+–R2NOH. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号