首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The aim of this paper is to study contractivity properties of two locally one-dimensional splitting methods for non-linear, multi-space dimensional parabolic partial differential equations. The term contractivity means that perturbations shall not propagate in the course of the time integration process. By relating the locally one-dimensional methods with contractive integration formulas for ordinary differential systems it can be shown that the splitting methods define contractive numerical solutions for a large class of non-linear parabolic problems without restrictions on the size of the time step.  相似文献   

2.
Summary The stability and accuracy of some explicit nonlinear methods for the numerical integration of stiff systems of ordinary differential equations are investigated. It is shown, that in the general case they can produce the essential error. The special class of stiff systems is singled out, for which these methods are highly efficient. Some numerical results are also presented.
  相似文献   

3.
Summary In this paper we investigate the influence of the numerical quadrature in projection methods. In particular we derive conditions for the order of the quadrature formulas in finite element methods under which the order of convergence is not perturbed. It seems that this question has been discussed only for the Ritz method. There is an essential difference between this method on one side and the Galerkin and least squares methods on the other side. The methods using numerical integration are only in the latter case still projection methods. The resulting conditions for the quadrature formulas are often much weaker than those for the Ritz method. Numerical examples using cubic splines and polynomials show that the conditions derived are realistic. These examples also allow the comparison of some projection methods.
  相似文献   

4.
Cash  J. R. 《Numerische Mathematik》1981,37(3):355-370
Summary Recently there has been considerable interest in the approximate numerical integration of the special initial value problemy=f(x, y) for cases where it is known in advance that the required solution is periodic. The well known class of Störmer-Cowell methods with stepnumber greater than 2 exhibit orbital instability and so are often unsuitable for the integration of such problems. An appropriate stability requirement for the numerical integration of periodic problems is that ofP-stability. However Lambert and Watson have shown that aP-stable linear multistep method cannot have an order of accuracy greater than 2. In the present paper a class of 2-step methods of Runge-Kutta type is discussed for the numerical solution of periodic initial value problems.P-stable formulae with orders up to 6 are derived and these are shown to compare favourably with existing methods.  相似文献   

5.
Partitioned adaptive Runge-Kutta methods and their stability   总被引:4,自引:0,他引:4  
Summary This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system partitioned adaptive Runge-Kutta methods are studied. Nonstiff equations are integrated by an explicit Runge-Kutta method while an adaptive Runge-Kutta method is used for the stiff part of the system.The paper discusses numerical stability and contractivity as well as the implementation and usage of such compound methods. Test results for three partitioned stiff initial value problems for different tolerances are presented.  相似文献   

6.
Summary. Our task in this paper is to present a new family of methods of the Runge–Kutta type for the numerical integration of perturbed oscillators. The key property is that those algorithms are able to integrate exactly, without truncation error, harmonic oscillators, and that, for perturbed problems the local error contains the perturbation parameter as a factor. Some numerical examples show the excellent behaviour when they compete with Runge–Kutta–Nystr?m type methods. Received June 12, 1997 / Revised version received July 9, 1998  相似文献   

7.
8.
Unconditionally stable explicit methods for parabolic equations   总被引:2,自引:0,他引:2  
Summary This paper discussesrational Runge-Kutta methods for stiff differential equations of high dimensions. These methods are explicit and in addition do not require the computation or storage of the Jacobian. A stability analysis (based onn-dimensional linear equations) is given. A second orderA 0-stable method with embedded error control is constructed and numerical results of stiff problems originating from linear and nonlinear parabolic equations are presented.  相似文献   

9.
To prove convergence of numerical methods for stiff initial value problems, stability is needed but also estimates for the local errors which are not affected by stiffness. In this paper global error bounds are derived for one-leg and linear multistep methods applied to classes of arbitrarily stiff, nonlinear initial value problems. It will be shown that under suitable stability assumptions the multistep methods are convergent for stiff problems with the same order of convergence as for nonstiff problems, provided that the stepsize variation is sufficiently regular.  相似文献   

10.
Multistep collocation methods for initial value problems in ordinary differential equations are known to be a subclass of multistep Runge-Kutta methods and a generalisation of the well-known class of one-step collocation methods as well as of the one-leg methods of Dahlquist. In this paper we derive an error estimation method of embedded type for multistep collocation methods based on perturbed multistep collocation methods. This parallels and generalizes the results for one-step collocation methods by Nørsett and Wanner. Simple numerical experiments show that this error estimator agrees well with a theoretical error estimate which is a generalisation of an error estimate first derived by Dahlquist for one-leg methods.  相似文献   

11.
Summary In this paper we develop a class of numerical methods to approximate the solutions of delay differential equations. They are essentially based on a modified version, in a predictor-corrector mode, of the one-step collocation method atn Gaussian points. These methods, applied to ODE's, provide a continuous approximate solution which is accurate of order 2n at the nodes and of ordern+1 uniformly in the whole interval. In order to extend the methods to delay differential equations, the uniform accuracy is raised to the order 2n by some a posteriori corrections. Numerical tests and comparisons with other methods are made on real-life problems.This work was supported by CNR within the Progetto Finalizzato Informatica-Sottopr. P1-SOFMAT  相似文献   

12.
Our goal is to propose four versions of modified Marder–Weitzner methods and to present the implementation of the new-type methods with incremental unknowns for solving nonlinear eigenvalue problems. By combining with compact schemes and modified Marder–Weitzner methods, six schemes well suited for the calculation of unstable solutions are obtained. We illustrate the efficiency of the new algorithms by using numerical computations and by comparing them with existing methods for some two-dimensional problems.  相似文献   

13.
Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the Sinc-Galerkin method for solving second order singularly perturbed boundary value problems. The method is then tested on linear and nonlinear examples and a comparison with spline method and finite element scheme is made. It is shown that the Sinc-Galerkin method yields better results.Received: January 3, 2003; revised: July 14, 2003  相似文献   

14.
Some efficient methods for enclosing simple zeros of nonlinear equations   总被引:5,自引:0,他引:5  
In the present paper we propose three new methods for computing sequences of enclosing intervals for a zero of a real function without convexity assumptions.The new methods have been tested on a series of published examples. The numerical experiments show that our methods are comparable in terms of efficiency with the well-known algorithms of Dekker and Brent.The present paper was written when this author was visiting the University of Karlsruhe. He would like to acknowledge the support provided by the University of Karlsruhe.  相似文献   

15.
Summary High order implicit integration formulae with a large region of absolute stability are developed for the approximate numerical integration of both stiff and non-stiff systems of ordinary differential equations. The algorithms derived behave essentially like one step methods and are demonstrated by direct application to certain particular examples.  相似文献   

16.
A new iterative method of the fourth-order for the simultaneous determination of polynomial zeros is proposed. This method is based on a suitable zero-relation derived from the fourth-order method for a single zero belonging to the Schröder basic sequence. One of the most important problems in solving polynomial equations, the construction of initial conditions that enable both guaranteed and fast convergence, is studied in detail for the proposed method. These conditions are computationally verifiable since they depend only on initial approximations, the polynomial coefficients and the polynomial degree, which is of practical importance. The construction of improved methods in ordinary complex arithmetic and complex circular arithmetic is discussed. Finally, numerical examples and the comparison with existing fourth-order methods are given.  相似文献   

17.
Gekeler  E.  Widmann  R. 《Numerische Mathematik》1986,50(2):183-203
Summary Runge-Kutta methods have been generalized to procedures with higher derivatives of the right side ofy=f(t,y) e.g. by Fehlberg 1964 and Kastlunger and Wanner 1972. In the present work some sufficient conditions for the order of consistence are derived for these methods using partially the degree of the corresponding numerical integration formulas. In particular, methods of Gauß, Radau, and Lobatto type are generalized to methods with higher derivatives and their maximum order property is proved. The applied technique was developed by Crouzeix 1975 for classical Runge-Kutta methods. Examples of simple explicit and semi-implicit methods are given up to order 7 and 6 respectively.  相似文献   

18.
Summary Two Rosenbrock-Wanner type methods for the numerical treatment of differential-algebraic equations are presented. Both methods possess a stepsize control and an index-1 monitor. The first method DAE34 is of order (3)4 and uses a full semi-implicit Rosenbrock-Wanner scheme. The second method RKF4DA is derived from the Runge-Kutta-Fehlberg 4(5)-pair, where a semi-implicit Rosenbrock-Wanner method is embedded, in order to solve the nonlinear equations. The performance of both methods is discussed in artificial test problems and in technical applications.  相似文献   

19.
Summary We study the average case behavior of suitable algorithms to solve a nonlinear problem in numerical analysis: determining zeroes of increasing Lipschitz functions of one variable. The bisection method (which is optimal with respect to the maximal error over the whole class of functions) is far from being optimal in a more general sense: There are methods which behave like bisection in the worst case but which yield much better results on the average. We prove that the sequentially optimal algorithm found by Sukharev is also optimal in our average case setting.  相似文献   

20.
A four-step method with phase-lag of infinite order is developed for the numerical integration of second order initial-value problems. Extensive numerical testing indicates that this new method can be generally more accurate than other four-step methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号