首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

2.
In this paper, we propose a composite generalized Laguerre–Legendre pseudospectral method for the Fokker–Planck equation in an infinite channel, which behaves like a parabolic equation in one direction, and behaves like a hyperbolic equation in other direction. We establish some approximation results on the composite generalized Laguerre–Legendre–Gauss–Radau interpolation, with which the convergence of proposed composite scheme follows. An efficient implementation is provided. Numerical results show the spectral accuracy in space of this approach and coincide well with theoretical analysis. The approximation results and techniques developed in this paper are also very appropriate for many other problems on multiple-dimensional unbounded domains, which are not of standard types.  相似文献   

3.
Some Reaction‐Diffusion equations present solutions of the traveling wave form. In this work, we present an implicit numerical scheme based on finite difference originally proposed to solve hyperbolic equations. Then, this method is improved using a pseudospectral approach to discretize the spatial variable. The results prove that this new scheme is useful to solve equations of the parabolic type which presents traveling wave solutions. In particular, problems where a reduction in the number of discretization points and an increase of the size of the time step play an important role in their solution are considered. The implicit scheme presented involves the solution of linear systems only. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 86–105, 2016  相似文献   

4.
Renaut  Rosemary  Su  Yi 《Numerical Algorithms》1997,16(3-4):255-281
When the standard Chebyshev collocation method is used to solve a third order differential equation with one Neumann boundary condition and two Dirichlet boundary conditions, the resulting differentiation matrix has spurious positive eigenvalues and extreme eigenvalue already reaching O(N 5 for N = 64. Stable time-steps are therefore very small in this case. A matrix operator with better stability properties is obtained by using the modified Chebyshev collocation method, introduced by Kosloff and Tal Ezer [3]. By a correct choice of mapping and implementation of the Neumann boundary condition, the matrix operator has extreme eigenvalue less than O(N 4. The pseudospectral and modified pseudospectral methods are implemented for the solution of one-dimensional third-order partial differential equations and the accuracy of the solutions compared with those by finite difference techniques. The comparison verifies the stability analysis and the modified method allows larger time-steps. Moreover, to obtain the accuracy of the pseudospectral method the finite difference methods are substantially more expensive. Also, for the small N tested, N ⩽ 16, the modified pseudospectral method cannot compete with the standard approach. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In this article we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation. The method consists of expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrices of integral and derivative, we reduce the problem to a set of linear algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

6.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
We study a class of degenerate convection-diffusion equations with a fractional non-linear diffusion term. This class is a new, but natural, generalization of local degenerate convection-diffusion equations, and include anomalous diffusion equations, fractional conservation laws, fractional porous medium equations, and new fractional degenerate equations as special cases. We define weak entropy solutions and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable solutions. Then we introduce a new monotone conservative numerical scheme and prove convergence toward the entropy solution in the class of bounded integrable BV functions. The well-posedness results are then extended to non-local terms based on general Lévy operators, connections to some fully non-linear HJB equations are established, and finally, some numerical experiments are included to give the reader an idea about the qualitative behavior of solutions of these new equations.  相似文献   

8.
In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A stabilized finite element method (FEM) is presented for solving the convection–diffusion equation. We enrich the linear finite element space with local functions chosen according to the guidelines of the residual‐free bubble (RFB) FEM. In our approach, the bubble part of the solution (the microscales) is approximated via an adequate choice of discontinuous bubbles allowing static condensation. This leads to a streamline‐diffusion FEM with an explicit formula for the stability parameter τK that incorporates the flow direction, has the capability to deal with problems where there is substantial variation of the Péclet number, and gives the same limit as the RFB method. The method produces the same a priori error estimates that are typically obtained with streamline‐upwind Petrov/Galerkin and RFB. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

10.
In this research, the problem of solving the two‐dimensional parabolic equation subject to a given initial condition and nonlocal boundary specifications is considered. A technique based on the pseudospectral Legendre method is proposed for the numerical solution of the studied problem. Several examples are given and the numerical results are shown to demonstrate the efficiently of the newly proposed method. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

11.
The Klein–Gordon–Schrödinger equations describe a classical model of the interaction between conservative complex neutron field and neutral meson Yukawa in quantum field theory. In this paper, we study the long-time behavior of solutions for the Klein–Gordon–Schrödinger equations. We propose the Chebyshev pseudospectral collocation method for the approximation in the spatial variable and the explicit Runge–Kutta method in time discretization. In comparison with the single domain, the domain decomposition methods have good spatial localization and generate a sparse space differentiation matrix with high accuracy. In this study, we choose an overlapping multidomain scheme. The obtained numerical results show the Pseudospectral multidomain method has excellent long-time numerical behavior and illustrate the effectiveness of the numerical scheme in controlling two particles. Some comparisons with single domain pseudospectral and finite difference methods will be also investigated to confirm the efficiency of the new procedure.  相似文献   

12.
In this paper, new and efficient numerical method, called as Chebyshev wavelet collocation method, is proposed for the solutions of generalized Burgers–Huxley equation. This method is based on the approximation by the truncated Chebyshev wavelet series. By using the Chebyshev collocation points, algebraic equation system has been obtained and solved. Approximate solutions of the generalized Burgers–Huxley equation are compared with exact solutions. These calculations demonstrate that the accuracy of the Chebyshev wavelet collocation solutions is quite high even in the case of a small number of grid points. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
1.TheSchemesInthispaper,weconsidercombinedChebyshevspectraLfiniteelementmethodforthreedimensionalunsteadyvorticityequation.LetQbeaconvexpolygoninRZandIbetheinterval(--1,1).x~(xl,x2)andfi={(x,y)/xEQ,yEI}.Theboundaryoffiisdenotedbyoff.Denotethevorticityvectorandstreamvectorby(andoprespectively.Theircomponentsaref(q)andop(q),q=1,2,3.Letu>0bethekineticviscosity.fi,fZandfoaregivenvectors.Thethree-dimensionalvorticityequationisAssumethattheboundaryisafixednon-slipwallandsoop=oonafl.FOrsimpli…  相似文献   

14.
In this article, we propose a Fourier pseudospectral method for solving the generalized improved Boussinesq equation. We prove the convergence of the semi‐discrete scheme in the energy space. For various power nonlinearities, we consider three test problems concerning the propagation of a single solitary wave, the interaction of two solitary waves and a solution that blows up in finite time. We compare our numerical results with those given in the literature in terms of numerical accuracy. The numerical comparisons show that the Fourier pseudospectral method provides highly accurate results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 995–1008, 2015  相似文献   

15.
The Legendre pseudospectral method is developed for the numerical solution of nonlinear Duffing equation involving both integral and non‐integral forcing terms. By using differentiation matrix, the problem is reduced to the solution of a system of algebraic equations. The method is general, easy to implement, and yields very accurate results. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Based on the overlapping domain decomposition, an efficient parallel characteristic finite difference scheme is proposed for solving convection‐diffusion equations numerically. We give the optimal convergence order in error estimate analysis, which shows that we just need to iterate once or twice at each time level to reach the optimal convergence order. Numerical experiments also confirm the theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 854–866, 2011  相似文献   

17.
This paper presents a new approximate method of Abel differential equation. By using the shifted Chebyshev expansion of the unknown function, Abel differential equation is approximately transformed to a system of nonlinear equations for the unknown coefficients. A desired solution can be determined by solving the resulting nonlinear system. This method gives a simple and closed form of approximate solution of Abel differential equation. The solution is calculated in the form of a series with easily computable components. The numerical results show the effectiveness of the method for this type of equation. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.  相似文献   

18.
19.
In this paper we study convergence and computation of interpolatory quadrature formulas with respect to a wide variety of weight functions. The main goal is to evaluate accurately a definite integral, whose mass is highly concentrated near some points. The numerical implementation of this approach is based on the calculation of Chebyshev series and some integration formulas which are exact for polynomials. In terms of accuracy, the proposed method can be compared with rational Gauss quadrature formula.  相似文献   

20.
A Legendre pseudospectral method is developed for a PDE model for the dynamics of infectious diseases. The stability and the convergence rate of the method are studied. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 417–432, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号