首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Protein farnesytransferase (FTase) catalyzes the transfer of a 15-carbon prenyl group from farnesyl diphosphate (FPP) to the cysteine residue of target proteins and is a member of the newest class of zinc metalloenzymes that catalyze sulfur alkylation. Common substrates of FTase include oncogenic Ras proteins, and therefore inhibitors are under development for the treatment of various cancers. An increased understanding of the salient features of the chemical transition state of FTase may aid in the design of potent inhibitors and enhance our understanding of the mechanism of this class of zinc enzymes. To investigate the transition state of FTase we have used transient kinetics to measure the alpha-secondary 3H kinetic isotope effect at the sensitive C1 position of FPP. The isotope effect for the FTase single turnover reaction using a peptide substrate that is farnesylated rapidly is near unity, indicating that a conformational change, rather than farnesylation, is the rate-limiting step. To look at the chemical step, the kinetic isotope effect was measured as 1.154 +/- 0.006 for a peptide that is farnesylated slowly, and these data suggest that FTase proceeds via a concerted mechanism with dissociative character.  相似文献   

2.
The solvolysis of α-d-glucopyranosyl fluoride in hexafluoro-2-propanol gives two products, 1,1,1,3,3,3-hexafluoropropan-2-yl α-d-glucopyranoside and 1,6-anhydro-β-D-glucopyranose. The ratio of these two products is essentially unchanged for reactions that are performed between 56 and 100 °C. The activation parameters for the solvolysis reaction are as follows: ΔH(++) = 81.4 ± 1.7 kJ mol(-1), and ΔS(++) = -90.3 ± 4.6 J mol(-1) K(-1). To characterize, by use of multiple kinetic isotope effect (KIE) measurements, the TS for the solvolysis reaction in hexafluoro-2-propanol, we synthesized a series of isotopically labeled α-d-glucopyranosyl fluorides. The measured KIEs for the C1 deuterium, C2 deuterium, C5 deuterium, anomeric carbon, ring oxygen, O6, and solvent deuterium are 1.185 ± 0.006, 1.080 ± 0.010, 0.987 ± 0.007, 1.008 ± 0.007, 0.997 ± 0.006, 1.003 ± 0.007, and 1.68 ± 0.07, respectively. The transition state for the solvolysis reaction was modeled computationally using the experimental KIE values as constraints. Taken together, the reported data are consistent with the retained solvolysis product being formed in an S(N)i (D(N)(++)*A(Nss)) reaction with a late transition state in which cleavage of the glycosidic bond is coupled to the transfer of a proton from a solvating hexafluoro-2-propanol molecule. In comparison, the inverted product, 1,6-anhydro-β-D-glucopyranose, is formed by intramolecular capture of a solvent-equilibrated glucopyranosylium ion, which results from dissociation of the solvent-separated ion pair formed in the rate-limiting ionization reaction (D(N)(++) + A(N)). The implications that this model reaction have for the mode of action of retaining glycosyltransferases are discussed.  相似文献   

3.
Low-molecular-weight compounds that disrupt protein?protein interactions (PPIs) have tremendous potential applications as clinical agents and as chemical probes for investigating intracellular PPI networks. However, disrupting PPIs is extremely difficult due to the large, flat interfaces of many proteins, which often lack structurally defined cavities to which drug-like molecules could bind in a thermodynamically favorable manner. Here, we describe a series of bivalent compounds that anchor to the enzyme active site to deliver a minimally sized surface-binding module to the targeted surface involved in transient PPI with a substrate. These compounds are capable of significantly inhibiting enzymatic reactions involving protein surface?substrate interaction in the single-digit nanomole range. Inhibitors of farnesyltransferase (FTase), which possesses a negatively charged local area on its α-subunit, were designed by attaching a module derived from a branched monoamine-containing gallate to a conventional active-site-directed CVIM tetrapeptide using an alkyl spacer. A significant improvement in inhibitory activity (>200-fold) against farnesylation of the K-Ras4B peptide was observed when the gallate module was attached to the CVIM tetrapeptide. Furthermore, the bivalent compounds had submicromolar inhibitory activity against geranylgeranylation of the K-Ras4B peptide catalyzed by GGTase I, which has an α-subunit identical to that of FTase. The anchoring strategy we describe would be useful for designing a new class of PPI inhibitors as well as dual enzyme inhibitors targeting common surface structures.  相似文献   

4.
Density functional theory calculations have been performed to probe aspects of the function of the reaction centres of the DMSO reductase enzymes, in respect of catalysis of oxygen atom transfer (OAT). The first comparison between Mo and W at the active site of these enzymes has been accomplished by a consideration of the reaction profile for OAT from DMSO to [MoIV(OMe)(S2C2H2)2]1- versus that for the corresponding reaction with [WIV(OMe)(S2C2H2)2]1-. Both reaction profiles involve two transition states separated by a well-defined intermediate; however, whilst the second transition state (TS2) is clearly rate-limiting for the Mo system, the two transition states have a similar energy for the W system. The activation energy for OAT from DMSO to [WIV(OMe)(S2C2H2)2]1- is ca. 23 kJ mol-1 lower for the corresponding reaction with Mo, consistent with the significantly faster rate of reduction of DMSO by Rhodobacter capsulatus W-DMSO reductase than by its Mo counterpart. Consistent with the principle of the entatic state, the geometrical constraints imposed by the protein on the metal centre of the Mo- and W-DMSO reductases facilitate OAT by favouring a trigonal prismatic geometry for the transition state TS2 that is close to that observed for the metal in the oxidised form of each of these enzymes. The effects of different tautomers of a simplified form of the pyran ring-opened, dihydropterin state of the molybdopterin cofactor on the reaction profile for OAT have been considered. The major effect, a significant lowering of the activation barrier associated with TS2, is observed for a protonated form of a tautomer that involves conjugation between the pyrazine and metallodithiolene rings.  相似文献   

5.
The transition state (TS) structure of MutY-catalyzed DNA hydrolysis was solved using multiple kinetic isotope effect (KIE) measurements. MutY is a base excision repair enzyme which cleaves adenine from 8-oxo-G:A mismatches in vivo, and also from G:A mismatches in vitro. TS analysis of G:A-DNA hydrolysis revealed a stepwise S(N)1 (D(N)*A(N)(double dagger)) mechanism proceeding through a highly reactive oxacarbenium ion intermediate which would have a lifetime in solution of <10(-10) s. C-N bond cleavage is reversible; the N-glycoside bond breaks and reforms repeatedly before irreversible water attack on the oxacarbenium ion. KIEs demonstrated that MutY uses general acid catalysis by protonating N7. It enforces a 3'-exo sugar ring conformation and other sugar ring distortions to stabilize the oxacarbenium ion. Combining the experimental TS structure with the previously reported crystal structure of an abortive Michaelis complex elucidates the step-by-step catalytic sequence.  相似文献   

6.
Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.  相似文献   

7.
Wong FM  Wang J  Hengge AC  Wu W 《Organic letters》2007,9(9):1663-1665
[reaction: see text] A large and normal nitrogen-15 kinetic isotope effect of 1.035 +/- 0.003 provides direct support for the proposed mechanism for the rhodium-catalyzed carbene formation from diazo compounds, which involves the fast formation of a metal-diazo complex followed by rate-limiting extrusion of N2. The large magnitude of the KIE indicates extensive C-N bond fission in the transition state.  相似文献   

8.
Kinetic isotope effects (KIEs) and computer modeling are used to approximate the transition state of S. pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN). Experimental KIEs were measured and corrected for a small forward commitment factor. Intrinsic KIEs were obtained for [1'-3H], [1'-14C], [2'-3H], [4'-3H], [5'-3H(2)], [9-15N] and [Me-3H(3)] MTAs. The intrinsic KIEs suggest an SN1 transition state with no covalent participation of the adenine or the water nucleophile. The transition state was modeled as a stable ribooxacarbenium ion intermediate and was constrained to fit the intrinsic KIEs. The isotope effects predicted a 3-endo conformation for the ribosyl oxacarbenium-ion corresponding to H1'-C1'-C2'-H2' dihedral angle of 70 degrees. Ab initio Hartree-Fock and DFT calculations were performed to study the effect of polarization of ribosyl hydroxyls, torsional angles, and the effect of base orientation on isotope effects. Calculations suggest that the 4'-3H KIE arises from hyperconjugation between the lonepair (n(p)) of O4' and the sigma* (C4'-H4') antibonding orbital owing to polarization of the 3'-hydroxyl by Glu174. A [methyl-3H(3)] KIE is due to hyperconjugation between np of sulfur and sigma* of methyl C-H bonds. The van der Waal contacts increase the 1'-3H KIE because of induced dipole-dipole interactions. The 1'-3H KIE is also influenced by the torsion angles of adjacent atoms and by polarization of the 2'-hydroxyl. Changing the virtual solvent (dielectric constant) does not influence the isotope effects. Unlike most N-ribosyltransferases, N7 of the leaving group adenine is not protonated at the transition state of S. pneumoniae MTAN. This feature differentiates the S. pneumoniae and E. coli transition states and explains the 10(3)-fold decrease in the catalytic efficiency of S. pneumoniae MTAN relative to that from E. coli.  相似文献   

9.
Recombinant human thymidine phosphorylase catalyzes the reaction of arsenate with thymidine to form thymine and 2-deoxyribose 1-arsenate, which rapidly decomposes to 2-deoxyribose and inorganic arsenate. The transition-state structure of this reaction was determined using kinetic isotope effect analysis followed by computer modeling. Experimental kinetic isotope effects were determined at physiological pH and 37 degrees C. The extent of forward commitment to catalysis was determined by pulse-chase experiments to be 0.70%. The intrinsic kinetic isotope effects for [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, [5'-(3)H]-, [1'-(14)C]-, and [1-(15)N]-thymidines were determined to be 0.989 +/- 0.002, 0.974 +/- 0.002, 1.036 +/- 0.002, 1.020 +/- 0.003, 1.061 +/- 0.003, 1.139 +/- 0.005, and 1.022 +/- 0.005, respectively. A computer-generated model, based on density functional electronic structure calculations, was fit to the experimental isotope effect. The structure of the transition state confirms that human thymidine phosphorylase proceeds through an S(N)2-like transition state with bond orders of 0.50 to the thymine leaving group and 0.33 to the attacking oxygen nucleophile. The reaction differs from the dissociative transition states previously reported for N-ribosyl transferases and is the first demonstration of a nucleophilic transition state for an N-ribosyl transferase. The large primary (14)C isotope effect of 1.139 can occur only in nucleophilic displacements and is the largest (14)C primary isotope effect reported for an enzymatic reaction. A transition state structure with substantial bond order to the attacking nucleophile and leaving group is confirmed by the slightly inverse 1'-(3)H isotope effect, demonstrating that the transition state is compressed by the impinging steric bulk of the nucleophile and leaving group.  相似文献   

10.
Deuterium kinetic solvent isotope effects for the human alpha-thrombin-catalyzed hydrolysis of (1) substrates with selected P(1)-P(3) sites, Z-Pro-Arg-7-amido-4-methylcoumarin (7-AMC), N-t-Boc-Val-Pro-Arg-7-AMC, Bz-Phe-Val-Arg-4-nitroanilide (pNA), and H-D-Phe-L-Pip-Arg-pNA, are (DOD)k(cat) = (2.8-3.3) +/- 0.1 and (DOD)(k(cat)/K(m)) = (0.8-2.1) +/- 0.1 and (2) internally fluorescence-quenched substrates (a) (AB)Val-Phe-Pro-Arg-Ser-Phe-Arg-Leu-Lys(DNP)-Asp-OH, an optimal sequence, and (b) (AB)Val-Ser-Pro-Arg-Ser-Phe-Gln-Lys(DNP)-Asp-OH, recognition sequence for factor VIII, are (DOD)k(cat) = 2.2 +/- 0.2 and (DOD)(k(cat)/K(m)) = (0.8-0.9) +/- 0.1, at the pL (L = H, D) maximum, 8.4-9.0, and (25.0-26.0) +/- 0.1 degrees C. The most plausible models fitting the partial isotope effect (proton inventory) data have been selected on the basis of lowest values of the reduced chi squared and consistency of fractionation factors at all substrate concentrations, assuming rate-determining acylation. The data for Z-Pro-Arg-7-AMC are consistent with a single-proton bridge at the transition state phi(TS) = 0.39 +/- 0.05 and components for solvent reorganization phi(S) = 0.8 +/- 0.1 and phi(S) = 1.22 for k(cat) and k(cat)/K(m), respectively. The data for tripeptide amides fit bowl-shaped curves; an example is N-t-Boc-Val-Pro-Arg-7-AMC: phi(TS)(1) = phi(TS)(2) = 0.57 +/- 0.01 and phi(S) = 1 for k(cat) and 1.6 +/- 0.1 for k(cat)/K(m). Proton inventories for the nonapeptide (2b) are linear. The data for k(cat) for H-D-Phe-L-Pip-Arg-pNA and the decapeptide (2a) are most consistent with two identical fractionation factors for catalytic proton bridging, phi(TS)(1) = phi(TS)(2) = 0.68 +/- 0.02 and a large inverse component (phi(S) = 3.1 +/- 0.5) for the latter, indicative of substantial solvent reorganization upon leaving group departure. Proton inventory curves for k(cat)/K(m) for nearly all substrates are dome-shaped with an inverse isotope effect component (phi(S) = 1.2-2.4) originating from solvent reorganization during association of thrombin with substrate. These large contributions from medium effects are in full accord with the conformational adjustments required for the fulfillment of the dual, hemostatic and thrombolytic, functions of thrombin.  相似文献   

11.
Kinetic isotope effects (KIEs) and computer modeling using density functional theory were used to approximate the transition state of human 5'-methylthioadenosine phosphorylase (MTAP). KIEs were measured on the arsenolysis of 5'-methylthioadenosine (MTA) catalyzed by MTAP and were corrected for the forward commitment to catalysis. Intrinsic KIEs were obtained for [1'-(3)H], [1'-(14)C], [2'-(3)H], [4'-(3)H], [5'-(3)H(2)], [9-(15)N], and [Me-(3)H(3)] MTAs. The primary intrinsic KIEs (1'-(14)C and 9-(15)N) suggest that MTAP has a dissociative S(N)1 transition state with its cationic center at the anomeric carbon and insignificant bond order to the leaving group. The 9-(15)N intrinsic KIE of 1.039 also establishes an anionic character for the adenine leaving group, whereas the alpha-primary 1'-(14)C KIE of 1.031 indicates significant nucleophilic participation at the transition state. Computational matching of the calculated EIEs to the intrinsic isotope effects places the oxygen nucleophile 2.0 Angstrom from the anomeric carbon. The 4'-(3)H KIE is sensitive to the polarization of the 3'-OH group. Calculations suggest that a 4'-(3)H KIE of 1.047 is consistent with ionization of the 3'-OH group, indicating formation of a zwitterion at the transition state. The transition state has cationic character at the anomeric carbon and is anionic at the 3'-OH oxygen, with an anionic leaving group. The isotope effects predicted a 3'-endo conformation for the ribosyl zwitterion, corresponding to a H1'-C1'-C2'-H2' torsional angle of 33 degrees. The [Me-(3)H(3)] and [5'-(3)H(2)] KIEs arise predominantly from the negative hyperconjugation of the lone pairs of sulfur with the sigma (C-H) antibonding orbitals. Human MTAP is characterized by a late S(N)1 transition state with significant participation of the phosphate nucleophile.  相似文献   

12.
Through employment of deuterium-labeled substrates, the triflic acid catalyzed intramolecular exo addition of the X-H(D) (X=N, O) bond of a sulfonamide, alcohol, or carboxylic acid across the C=C bond of a pendant cyclohexene moiety was found to occur, in each case, with exclusive formation (≥90%) of the anti-addition product without loss or scrambling of deuterium as determined by (1)H and (2)H NMR spectroscopy and mass spectrometry analysis. Kinetic analysis of the triflic-acid-catalyzed intramolecular hydroamination of N-(2-cyclohex-2'-enyl-2,2-diphenylethyl)-p-toluenesulfonamide (1a) established the second-order rate law: rate=k(2)[HOTf][1a] and the activation parameters ΔH(++)=(9.7±0.5) kcal mol(-1) and ΔS(++)=(-35±5) cal K(-1) mol(-1). An inverse α-secondary kinetic isotope effect of k(D)/k(H) =(1.15±0.03) was observed upon deuteration of the C2' position of 1a, consistent with partial C-N bond formation in the highest energy transition state of catalytic hydroamination. The results of these studies were consistent with a mechanism for the intramolecular hydroamination of 1a involving concerted, intermolecular proton transfer from an N-protonated sulfonamide to the alkenyl C3' position of 1a coupled with intramolecular anti addition of the pendant sulfonamide nitrogen atom to the alkenyl C2' position.  相似文献   

13.
This paper reports on a spectrophotometric kinetic study of the effects of the alkali metal ions Li+ and K+ on the ethanolysis of the aryl methyl phenyl phosphinate esters 3a-f in anhydrous ethanol at 25 degrees C. Rate data obtained in the absence and presence of complexing agents afford the second-order rate constants for the reaction of free ethoxide (k(EtO-)) and metal ion-ethoxide ion pairs (k(MOEt)). The sequence k(EtO-) < k(MOEt) is established for all the substrates, contrary to the generally observed reactivity order in nucleophilic substitution processes. The quantities deltaG(ip), deltaG(ts) and DeltaG(cat), which quantify the observed alkali metal ion effect in terms of transition state stabilization through chelation of the metal ion, give the order deltaG(ts) > deltaG(ip) for Li+ and K+. Hammett plots show significantly better correlation of rates with sigma and sigma(o) substituent constants than with sigma-, yielding moderately large rho(rho(o)) values that are consistent with a stepwise mechanism in which formation of a pentacoordinate (phosphorane) intermediate is the rate-limiting step. The range of the values of the selectivity parameter, rho(n) (= rho]/rho(eq)), 1.3-1.6, obtained for the uncatalyzed and alkali metal ion catalyzed reactions indicates that there is no significant perturbation of the transition state (TS) structure upon chelation of the metal ions. This finding is relevant to the mechanism of enzymatic phosphoryl transfer involving metal ion co-factors. The present results enable one to compare structural effects for nucleophilic reactions of several series of organophosphorus substrates. It is shown that the order of reactivity of the substrates: 4-nitrophenyl dimethyl phosphinate (2) > 3a > 4-nitrophenyl diphenyl phosphinate (1) is determined mainly by the steric effects of the alkyl/aryl substituents around the central P atom in the TS of the reaction.  相似文献   

14.
The effect of inert salts on the structure of the transition state has been determined by measuring the secondary alpha deuterium and the chlorine leaving group kinetic isotope effects for the S(N)2 reaction between n-butyl chloride and thiophenoxide ion in both methanol and DMSO. The smaller secondary alpha deuterium isotope effects and very slightly larger chlorine isotope effects found in both solvents when the inert salt is present suggests that the S(N)2 transition state is tighter and more product-like, with a shorter S-C(alpha) and very a slightly longer C(alpha)-Cl bond when the added salt is present. The salt effect on the reaction in methanol where the reacting nucleophile is the solvent-separated ion-pair complex is much greater than the salt effect on the reaction in DMSO where the reacting nucleophile is the free ion. This greater change in transition-state structure found when the inert salt is present in methanol is consistent with the solvation rule for S(N)2 reactions. The greater change in the S-C(alpha) bond is predicted by the bond strength hypothesis. A rationale for the changes found in transition-state structure when the inert salt is present is suggested for both the free-ion and the ion-pair reactions.  相似文献   

15.
[reaction: see text] The transition structures and alpha-carbon 12C/13C kinetic isotope effects for 22 S(N)2 reactions between methyl chloride and a wide variety of nucleophiles have been calculated using the B1LYP/aug-cc-pVDZ level of theory. Anionic, neutral, and radical anion nucleophiles were used to give a wide range of S(N)2 transition states so the relationship between the magnitude of the alpha-carbon kinetic isotope effect and transition-state structure could be determined. The results suggest that the alpha-carbon 12C/13C kinetic isotope effects for S(N)2 reactions will be large (near the experimental maximum) and that the curve relating the magnitude of the KIE to the percent transfer of the alpha-carbon from the nucleophile to the leaving group in the transition state has a broad maximum. This means very similar KIEs will be found for early, symmetric, and late transition states and that one cannot use the magnitude of these KIEs to estimate transition-state structure.  相似文献   

16.
Described here is the application of oxygen isotope fractionation together with computational methods, to elucidate a mechanism of enzymatic H2O2 activation. Horseradish peroxidase (HRP) has been the subject of intensive experimental and computational studies, yet questions remain as to the reversibility of the O-O cleavage step. New insight is afforded by the competitive oxygen kinetic isotope effect (18O KIE) upon H2O2 consumption determined under turnover conditions. The 18O KIE is compared to isotope effects calculated for the O-O heterolysis transition state and potential intermediates using density functional theory. In addition, experiments in enriched water provide evidence for HRP-catalyzed scrambling of the 18O label into the unreacted H2O2. The results provide an unprecedented view of H2O2 activation by a heme peroxidase and challenge the assumption of rate-limiting O-O heterolysis.  相似文献   

17.
The mechanism of the heterolytic solvolysis of p-tolyldiazonium cation in water was studied by a combination of kinetic isotope effects, theoretical calculations, and dynamics trajectories. Significant (13)C kinetic isotope effects were observed at the ipso (k(12)C/k(13)C = 1.024), ortho (1.017), and meta (1.013) carbons, indicative of substantial weakening of the C(2)-C(3) and C(5)-C(6) bonds at the transition state. This is qualitatively consistent with a transition state forming an aryl cation, but on a quantitative basis, simple S(N)1 heterolysis does not account best for the isotope effects. Theoretical S(N)2Ar transition structures for concerted displacement of N(2) by a single water molecule lead to poor predictions of the experimental isotope effects. The best predictions of the (13)C isotope effects arose from transition structures for the heterolytic process solvated by clusters of water molecules. These structures, formally saddle points for concerted displacements on the potential energy surface, may be described as transition structures for solvent reorganization around the aryl cation. Quasiclassical dynamics trajectories starting from these transition structures afforded products very slowly, compared to a similar S(N)2 displacement, and the trajectories often afforded long-lived aryl cation intermediates. Critical prior evidence for aryl cation intermediates is reconsidered with the aid of DFT calculations. Overall, the nucleophilic displacement process for aryldiazonium ions in water is at the boundary between S(N)2Ar and S(N)1 mechanisms, and an accurate view of the reaction mechanism requires consideration of dynamic effects.  相似文献   

18.
Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe(II)(S(Me2)N(4)(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO(2))) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O(2)(-) to HO(2) (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO(2))), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants σ(-). Activation parameters ((ΔH(++) = 2.8 kcal/mol, ΔS(++) = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO(2) to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (ΔH(++) = 13.2 kcal/mol and ΔS(++) = -24.3 eu), and acetic acid- (ΔH(++) = 8.3 kcal/mol and ΔS(++) = -34 eu) promoted release of H(2)O(2) to afford solvent-bound [Fe(III)(S(Me2)N(4)(tren))(OMe)](+) (3) and [Fe(III)(S(Me2)N(4)(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.  相似文献   

19.
A series of substituted 2-nitrosiminobenzothiazolines (2) were synthesized by the nitrosation of the corresponding 2-iminobenzothiazolines (6). Thermal decomposition of 2a--f and of the seleno analogue 7 in methanol and of 3-methyl-2-nitrosobenzothiazoline (2a) in acetonitrile, 1,4-dioxane, and cyclohexane followed first-order kinetics. The activation parameters for thermal deazetization of 2a were measured in cyclohexane (Delta H(++) = 25.3 +/- 0.5 kcal/mol, Delta S(++) = 1.3 +/- 1.5 eu) and in methanol (Delta H(++) = 22.5 +/- 0.7 kcal/mol, Delta S(++) = -12.9 +/- 2.1 eu). These results indicate a unimolecular decomposition and are consistent with a proposed stepwise mechanism involving cyclization of the nitrosimine followed by loss of N(2). The ground-state conformations of the parent nitrosiminothiazoline (9a) and transition states for rotation around the exocyclic C==N bond, electrocyclic ring closure, and loss of N(2) were calculated using ab initio molecular orbital theory at the MP2/6-31G* level. The calculated gas-phase barrier height for the loss of N(2) from 9a (25.2 kcal/mol, MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE) compares favorably with the experimental barrier for 2a of 25.3 kcal/mol in cyclohexane. The potential energy surface is unusual; the rotational transition state 9a-rot-ts connects directly to the orthogonal transition state for ring-closure 9aTS. The decoupling of rotational and pseudopericyclic bond-forming transition states is contrasted with the single pericyclic transition state (15TS) for the electrocyclic ring-opening of oxetene (15) to acrolein (16). For comparison, the calculated homolytic strength of the N--NO bond is 40.0 kcal/mol (MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE).  相似文献   

20.
Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号