共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups. 相似文献
3.
Jusufi A Hynninen AP Panagiotopoulos AZ 《The journal of physical chemistry. B》2008,112(44):13783-13792
We propose a method for parametrization of implicit solvent models for the simulation of the self-assembly of ionic surfactants into micelles. The parametrization is carried out in two steps. The first step involves atomistic molecular dynamics simulations of headgroups and counterions with explicit solvent to determine structural properties. An implicit solvent model of the headgroup/counterion system is obtained by matching structural quantities between explicit solvent and implicit solvent systems. In the second step, we identify the solvophobic attractions between the tail beads. We determine the solvophobic parameters using grand canonical Monte Carlo simulations with histogram reweighting techniques. The matching objective for the identification of solvophobic attractions is the critical micelle concentration (cmc). We choose sodium dodecyl sulfate as the reference system. On the basis of hydrophobic parameters obtained from this particular model, we study specific ion effects (lithium and potassium instead of sodium) as well as the effect of cationic headgroups (dodecyltrimethylammonium bromide/chloride). Furthermore, the chain length dependence of micellization properties is investigated for sodium alkyl sulfate, with alkyl lengths between 6 and 14. All cases considered give results in broad agreement with experimental data, confirming the transferability of parameters and the generality of the approach. 相似文献
4.
Guangyue Bai António Lopes Margarida Bastos 《The Journal of chemical thermodynamics》2008,40(10):1509-1516
Alkylimidazolium salts are a very important class of compounds. So far, calorimetry has hardly been used to characterize their solution behaviour. The enthalpies obtained from indirect methods have an intrinsic large uncertainty, and nowadays it is clear that calorimetry is the most sensitive technique for directly measuring the thermodynamic properties of aggregation.In this work, isothermal titration calorimetry (ITC) was used along with conductivity to determine the thermodynamics of aggregation of 1-alkyl-3-methylimidazolium chlorides ([Cnmim]Cl, n = 8, 10, 12, and 14) in aqueous solution. The critical micelle concentrations, cmc, were obtained from conductivity and calorimetry, and the enthalpies of micelle formation, ΔHmic, were derived from the calorimetric titrations. From conductivity, we could also derive the values for the degree of ionisation of the micelles (α), the molar conductivity (ΛM) of the [Cnmim]Cl micellar species and the molar conductivity at infinite dilution (Λ∞) for the [Cnmim]+ cations.Values are therefore reported for the enthalpy (ΔHmic), the Gibbs free energy (ΔGmic) and entropy (ΔSmic) changes for micelle formation. Further, the aggregate sizes and aggregation numbers were obtained by light scattering (LS) measurements.The observed variation of the thermodynamic properties with the alkyl chain length is discussed in detail and compared with the traditional cationic surfactants 1-alkyl-trimethylammonium chlorides, [CnTA]Cl. The difference in the values of the thermodynamic parameters for both types of surfactants is here related to the structure of their head groups. 相似文献
5.
Sakai K Umezawa S Tamura M Takamatsu Y Tsuchiya K Torigoe K Ohkubo T Yoshimura T Esumi K Sakai H Abe M 《Journal of colloid and interface science》2008,318(2):440-448
The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc. 相似文献
6.
7.
8.
N. G. Arutyunyan L. R. Arutyunyan V. V. Grigoryan R. S. Arutyunyan 《Colloid Journal》2008,70(5):666-668
The effect of aminoacids (DL-glycine, DL-alanine, DL-serine, L-leucine, L-lysine, DL-phenylalanine, DL-tyrosine, and L-aspartic acid) on the critical micellization concentration (CMC) of nonionic, anionic, and cationic surfactants is investigated. It is established that, as the hydrophobicity of aminoacids rises, the CMC values of ionic and nonionic surfactants increase and decrease, respectively. An exception is aspartic acid, which reduces CMC values irrespective of the nature of surfactants. 相似文献
9.
Li Y Li P Wang J Wang Y Yan H Dong C Thomas RK 《Journal of colloid and interface science》2005,287(1):333-337
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms. 相似文献
10.
Lah J Bester-Roga Ccaron M Perger TM Vesnaver G 《The journal of physical chemistry. B》2006,110(46):23279-23291
Understanding micellization processes at the molecular level has direct relevance for biological self-assembly, folding, and association processes. As such, it requires complete characterization of the micellization thermodynamics, including its correlation with the corresponding structural features. In this context, micellization of a series of model non-ionic surfactants (poly(ethylene glycol) monooctyl ethers, C(8)E(gamma)) was studied by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). The corresponding structural properties of C(8)E(gamma) micelles were investigated by small-angle X-ray scattering (SAXS). The C(8)E(gamma) micellization, characterized independently from ITC, DSC, and structural data, reveals that deltaH(M)(o) > 0, deltaS(M)(o) > 0, and deltaC(P)(M)(o) < 0, while the dissection of its energetics shows that it is primarily governed by the transfer of 20-30 C(8) alkyl chains from aqueous solution into the nonpolar core (r approximately 1.3 nm) of the spherical micelle. Moreover, thermodynamic parameters of micellization, estimated from the structural features related to the changes in solvent-accessible surface areas upon micellization, are in a good agreement with the corresponding parameters obtained from the analysis of ITC and DSC data. We have shown that the contributions to deltaS(M)(o) other than from hydration (deltaS(M)(other)(o)), estimated from experimental data, appear to be small (deltaS(M)(other)(o) < 0.1 deltaS(M)(other)(o)) and agree well with the theoretical estimates expressed as a sum of the corresponding translational, conformational, and size contributions. These deltaS(M)(other)(o) contributions are much less unfavorable than those estimated for a rigid-body association, which indicates the dynamic nature of the C(8)E(gamma) micellar aggregates. the dynamic nature of the C8EY micellar aggregates. 相似文献
11.
The importance of studying mixed micellization lies in tuning the performance of an amphiphile to bend through variation of stoichiometry of the blend. In this study, the binary and ternary mixed systems of cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide, and dodecylpyridinium chloride (DPC) have been studied at 30°C using tensiometry and conductometry. In most cases, the cmc observed from either method is in close proximity whereas in CPC/DPC mixtures, tensometric cmc precedes conductometric cmc which may arise from a lowering in degree of counterion binding on micellar interface in the mixed system with lower stoichiometric mole fraction of CPC. Various existing theories have been used and the results were compared with the experimental observations. 相似文献
12.
13.
Cheong DW Panagiotopoulos AZ 《Langmuir : the ACS journal of surfaces and colloids》2006,22(9):4076-4083
A lattice model for ionic surfactants with explicit counterions is proposed for which the micellization behavior can be accurately determined from grand canonical Monte Carlo simulations. The model is characterized by a few parameters that can be adjusted to represent various linear surfactants with ionic headgroups. The model parameters have a clear physical interpretation and can be obtained from experimental data unrelated to micellization, namely, geometric information and solubilities of tail segments. As a specific example, parameter values for sodium dodecyl sulfate were obtained by optimizing for the solubility of hydrocarbons in water and the structural properties of dodecane. The critical micelle concentration (cmc), average aggregation number, degree of counterion binding, and their dependence on temperature were determined from histogram reweighting grand canonical Monte Carlo simulations and were compared to experimental results. The model gives the correct trend and order of magnitude for all quantities but underpredicts the cmc and aggregation number. We suggest ways to modify the model that may improve agreement with experimental values. 相似文献
14.
Kresheck GC 《Journal of colloid and interface science》2006,298(1):432-440
The thermodynamic parameters that govern micelle formation by four different nonionic surfactants were investigated by ITC and DSC. These included n-dodecyldimethylphosphine oxide (APO12), Triton X-100 (TX-100), n-octyltetraoxyethylene (C8E4), and N,N-dimethyloctylamine-N-oxide (DAO8). All of these surfactants had been previously investigated by solution calorimetry over smaller temperature ranges with conflicting conclusions as to the temperature dependence of the heat capacity change, DeltaCp, for the process. The temperature coefficient of the heat capacity change, B (cal/mol K2), was derived from the enthalpy data that were obtained at small intervals over a broad temperature range. The values obtained for each of the surfactants at 298.2 K for DeltaCp and B were -155+/-2 and 0.50+/-0.36 (APO12), -97+/-3 and -0.24+/-0.18 (TX-100), -105+/-2 and 1.0+/-0.3 (C8E4), and -82+/-1 and 0.36+/-0.04 (DAO8), cal/mol K and cal/mol K2, respectively. The resulting B-values did not correlate with the cmc, aggregation number, or structure of the monomer in an obvious way, but they were found to reflect the relative changes in hydration of the polar and nonpolar portions of the surfactant molecule as the micelles are formed. An analysis of the data obtained from DSC scans was used to describe the temperature dependence of the critical micelle concentration, cmc. An abrupt increase in heat capacity was observed for TX-100 and C8E4 solutions of 36.5+/-0.5 and 21+/-5 cal/mol K, respectively, as the temperature of the scan passed through the cloud point. This change in heat capacity may reflect the increased monomer concentration of the solutions that accompanies phase separation, although other interpretations of this jump are possible. 相似文献
15.
Goldsipe A Blankschtein D 《Langmuir : the ACS journal of surfaces and colloids》2007,23(11):5942-5952
A molecular-thermodynamic (MT) theory was developed to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. The theory was validated by comparing predicted and experimental cmc's of ternary surfactant mixtures, yielding results that were comparable to, and sometimes better than, the cmc's determined using regular solution theory. The theory was also used to model a commercial nonionic surfactant (Genapol UD-079), which was modeled as a mixture of 16 surfactant components. The predicted cmc agreed well with the experimental cmc, and the monomer concentration was predicted to increase significantly above the cmc. In addition, the monomer and the micelle compositions were predicted to vary significantly with surfactant concentration. These composition variations were rationalized in terms of competing steric and entropic effects and a micelle shape transition near the cmc. To understand the packing constraints imposed on ternary surfactant mixtures better, the maximum micelle radius was also examined theoretically. The MT theory presented here represents the first molecular-based theory of the micellization behavior of mixtures of three or more conventional surfactants. In article 2 of this series, the MT theory will be extended to model the micellization of mixtures of conventional and pH-sensitive surfactants. 相似文献
16.
Vinay Chauhan Sukhprit Singh Raman Kamboj Rachana Mishra Gurcharan Kaur 《Colloid and polymer science》2014,292(2):467-476
N-hydroxyethyl-3-alkyloxypyridinium amphiphiles have been synthesized and characterized by various spectroscopic techniques. Self-assembling properties of these amphiphiles have been studied by surface tension, conductivity, and fluorescence measurements. Basic micellization parameters like critical micelle concentration (cmc), surface tension at the cmc (γ cmc), adsorption efficiency (pC20), effectiveness of surface tension reduction (Π cmc), maximum surface excess concentration (Γ max) and minimum surface area/molecule (A min), and Gibbs free energy of the micellization (ΔG0 mic) have also been determined. The micellization of these 3-alkyloxypyridinium halides in aqueous phase have been found to be exothermic and entropy-driven as assessed by conductivity measurements at different temperatures. Thermal degradation of these surfactants has also been assessed by thermal gravimetric analysis under nitrogen atmosphere. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of these surfactants on C6 glioma cells show them to be less toxic than conventional cationic surfactants. 相似文献
17.
Conductivity, viscosity, turbidity, and NMR measurements were performed over most of the mole fraction range for sodium deoxycholate (SDC) with hexadecyltrimethylammonium bromide (HTAB), hexadecylpyridinium bromide (HPyBr), and hexadecylpyridinium chloride (HPyCl). All studies demonstrate that the mixed-micelle formation is more favorable in SDC plus HTAB rather than SDC plus HPyBr or SDC plus HPyCl mixtures. The results showed that the bulky pyridinium head groups of HPyBr or HPyCl create steric incompatibility with rigid SDC monomers in the mixed state. 相似文献
18.
Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization, and biodegradability 总被引:1,自引:0,他引:1
Yoshimura T Ishihara K Esumi K 《Langmuir : the ACS journal of surfaces and colloids》2005,21(23):10409-10415
The sugar-based gemini surfactant with peptide bonds, N,N'-bisalkyl-N,N'-bis[2-(lactobionylamide)ethyl]hexanediamide (2C(n)peLac, in which n represents hydrocarbon chain lengths of 12 and 16), was synthesized by reacting adipoyl chloride with the corresponding monomeric surfactant N-alkyl-N'-lactobionylethylenediamine (C(n)peLac), which was obtained by reacting ethylenediamine with alkyl bromide and lactobionic acid. The adsorption and micellization properties of C(n)peLac and 2C(n)peLac were characterized by the measurement of their equilibrium and dynamic surface tension, steady-state fluorescence using pyrene as a probe, dynamic light scattering (DLS), and time-resolved fluorescence quenching (TRFQ), and their biodegradability was also investigated. The critical micelle concentration (cmc) decreases with an increase in the hydrocarbon chains from monomeric to gemini surfactants, whereas it increases with an increase in the chain length from 12 to 16 for both systems. The increases in both the hydrocarbon chain and the chain length of sugar-based surfactants reduce surface activities such as the ability to lower the surface tension, the occupied area per molecule, and the adsorption rate at the air/water interface. The sugar-based surfactants C(n)peLac and 2C(n)peLac exhibit unique aggregation behavior in aqueous solution. The DLS results indicate that the apparent hydrodynamic diameter of C(n)peLac micelles decreases sharply with increasing concentration, whereas that of 2C(n)peLac micelles decreases gradually. From the TRFQ measurement, it was observed that, as concentration increases, the aggregation numbers are almost constant for C(n)peLac, whereas they increase for 2C(n)peLac. These results imply that loosely packed micelles formed by sugar-based surfactants become tightly packed micelles as the concentration increases. Furthermore, it was found that 2C(n)peLac shows lower biodegradability than does C(n)peLac because it contains tertiary amines in the molecule. 相似文献
19.
Jin Zhang Bin Dong Liqiang Zheng Ganzuo Li 《Colloids and surfaces. A, Physicochemical and engineering aspects》2006,290(1-3):157-163
The effects of procaine hydrochloride (PC) on the micellization of two kinds of double tailed surfactants in aqueous solutions, sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT) and didodecyldimethylammonium bromide (DDAB), were studied by surface tension measurements. The results revealed that PC could decrease the equilibrium surface tension and critical micelle concentration (cmc) of AOT, but it is opposite for DDAB. Their standard thermodynamic parameters of micellization, , and , have been calculated in aqueous solutions. The locations of PC in the two kinds of micelles were investigated by UV and fluorescence spectroscopy. It is found that the mixed micelle of AOT and PC could be formed, but the effect of PC on the micellization of DDAB is quite small. 相似文献
20.
Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups. 1. Adsorption and micellization 总被引:2,自引:0,他引:2
Yoshimura T Nyuta K Esumi K 《Langmuir : the ACS journal of surfaces and colloids》2005,21(7):2682-2688
Zwitterionic heterogemini surfactants with two hydrocarbon chains and two different hydrophilic groups, N,N-dimethyl-N-[2-(N'-alkyl-N'-beta-carboxypropanoylamino)ethyl]-1-alkylammonium bromides (2C(n)AmCa, where n represents the hydrocarbon chain lengths of 8, 10, 12, and 14), were synthesized by N,N-dimethylethylenediamine with alkyl bromide, followed by reaction with succinic anhydride. One of the hydrophilic groups is a carboxylate anion, and the other is an ammonium cation. Their physicochemical properties were characterized by measuring equilibrium and dynamic surface tension, fluorescence intensity of pyrene, and light-scattering intensity. A relationship between a logarithm of critical micelle concentration (cmc) and hydrocarbon chain length showed a linear decrease upon increasing chain length and then a departure from linearity at n = 14. This is due to the existence of premicellar aggregations at concentrations below the cmc for n = 14. The surface tension of 2C(n)AmCa reached 27-30 mN m(-1) at each cmc, indicating efficiencies typical of hydrocarbon chain surfactants. The adsorbing rate at the air/water interface became slow with an increase of the chain length. From the fluorescence intensity ratios of 373 and 384 nm using pyrene as a probe, for n = 8, 10, and 14, the pyrene was solubilized in surfactant micelles at around the cmc, whereas for n = 12 the pyrene was solubilized from a concentration of 10-fold the cmc. The scattering intensities by dynamic light scattering also increased from around these concentrations for each chain length, showing the formation of aggregates in solution. 相似文献