首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
梁长海  刘倩  李闯  陈霄 《分子催化》2013,27(4):316-322
采用化学还原法合成Pd纳米立方体,并将其作为晶种,进一步合成大尺寸的纳米Pd立方体以及具有不同{100}和{111}晶面比例的纳米Pd多面体.将形貌和尺寸可控的纳米Pd溶胶应用于1,4-丁炔二醇催化加氢的反应中,反应结果表明,纳米Pd的催化性能取决于其尺寸和形貌.{111}晶面的催化活性高于{100}晶面,PVP稳定的Pd胶体对1,4-丁烯二醇均具有较高选择性,具有适当{100}和{111}晶面比例的纳米Pd多面体对1,4-丁烯二醇的选择性可达96%.  相似文献   

2.
Gold-silver alloy nanocages with controllable pores on the surface have been synthesized via galvanic replacement reaction between truncated Ag nanocubes and aqueous HAuCl4. Unlike in the previous studies, the initiation of replacement reaction started in a controllable way, simultaneously from eight corners of the truncated Ag nanocubes where {111} facets were exposed. The formation of cubic nanocages with pores at all the corners was determined by the capping agent, poly(vinyl pyrrolidone) (PVP), which preferentially covered the {100} facets of a truncated Ag nanocube.  相似文献   

3.
We report highly facet-dependent electrical properties of Cu(2)O nanocubes and octahedra and significant enhancement of gold nanocrystal cores to the electrical conductivity of Au-Cu(2)O core-shell octahedra. Cu(2)O nanocubes and octahedra and Au-Cu(2)O core-shell cubes and octahedra were synthesized by following our reported facile procedures at room temperature. Two oxide-free tungsten probes attached to a nanomanipulator installed inside a scanning electron microscope made contacts to a single Cu(2)O nanocrystal for the I-V measurements. Pristine Cu(2)O octahedra bounded by {111} facets are 1100 times more conductive than pristine Cu(2)O cubes enclosed by {100} faces, which are barely conductive. Core-shell cubes are only slightly more conductive than pristine cubes. A 10,000-fold increase in conductivity over a cube has been recorded for an octahedron. Remarkably, core-shell octahedra are far more conductive than pristine octahedra. The same facet-dependent electrical behavior can still be observed on a single nanocrystal exposing both {111} and {100} facets. This new fundamental property may be observable in other semiconductor nanocrystals. We also have shown that both core-shell cubes and octahedra outperform pristine cubes and octahedra in the photodegradation of methyl orange. Efficient photoinduced charge separation is attributed to this enhanced photocatalytic activity. Interestingly, facet-selective etching occurred over the {100} corners of some octahedra and core-shell octahedra during photocatalysis. The successful preparation of Au-Cu(2)O core-shell heterostructures with precise shape control has offered opportunities to discover new and exciting physical and chemical properties of nanocrystals.  相似文献   

4.
This paper describes a layer-by-layer epitaxial approach to the synthesis of multishelled nanocrystals composed of alternating shells of Pd and Pt by starting with seeds made of Pd or Pt nanocrystals. The synthesis was conducted by sequentially adding PtCl(4)(2-) and PdCl(4)(2-) salt precursors into a system containing either Pd or Pt seeds (in the shape of cuboctahedrons, octahedrons, plates, or cubes) together with a weak reducing agent such as citric acid (CA). The slow reduction kinetics associated with CA played an important role in the epitaxial growth of one metal on the other, resulting in the formation of Pd-Pt multishelled nanocrystals. Owing to the capping effect of CA for {111} facets of Pd and Pt, the multishelled nanocrystals tended to be enclosed by {111} facets in the form of octahedrons or thin plates, depending on the shapes of the Pd or Pt seeds: octahedrons for cuboctahedral, cubic, or octahedral seeds, and plates for platelike seeds.  相似文献   

5.
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well‐defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet‐dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.  相似文献   

6.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

7.
Electronic metal-support interactions (EMSIs) of oxide-supported metal catalysts strongly modifies the electronic structures of the supported metal nanoparticles. The strong influence of EMSIs on the electronic structures of oxide overlayers on metal nanoparticles employing cerium oxides/Ag inverse catalysts is reported herein. Ce2O3 overlayers were observed to exclusively form on Ag nanocrystals at low cerium loadings and be resistant to oxidation treatments up to 250 °C, whereas CeO2 overlayers gradually developed as the cerium loading increased. Ag cubes enclosed by {001} facets with a smaller work function exert a stronger EMSI effect on the CeOx overlayers than Ag cubes enclosed by {111} facets. Only the CeO2 overlayers with a fully developed bulk CeO2 electronic structure significantly promote the catalytic activity of Ag nanocrystals in CO oxidation, whereas cerium oxide overlayers with other electronic structures do not. These results successfully extend the concept of EMSIs from oxide-supported metal catalysts to metal-supported oxide catalysts.  相似文献   

8.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

9.
We report Pt nanocubes of ~4.5 nm in size synthesized by thermal decomposition in the presence of PVP. The Pt cubic electrocatalysts with dominantly exposed {100} facets show much improved electrocatalytic activities in methanol, ethanol and formic acid electrooxidation.  相似文献   

10.
Direct alcohol fuel cells (DAFCs) have attracted considerable research interest because of their potential application as alternative power sources for automotive systems and portable electronics. Pd-based catalysts represent one of the most popular catalysts for DAFCs due to their excellent electrocatalytic activities in alkaline electrolytes. Thus, it is of great importance to understand the structure-activity relationship of Pd electrocatalysts for alcohol electrocatalysis. Recently, size- and shape- controlled Pd nanocrystals have been successfully synthesized and subsequently used to study the size and shape effects of Pd electrocatalysts on alcohol electrocatalysis, in which the Pd (100) facet exhibited higher electrocatalytic oxidation activity for small alcohol molecules than the Pd (111) and (110) facets. Although it is well known that capping ligands, which are widely used in wet chemistry for the size- and shape-controlled synthesis of metal nanocrystals, likely chemisorb onto the surfaces of the resulting metal nanocrystals and influence their surface structure and surface-mediated properties, such as catalysis, this issue was not considered in previous studies of Pd nanocrystal electrocatalysts for electrocatalytic oxidation of small alcohol molecules. In this study, we prepared polyvinylpyrrolidone (PVP)-capped Pd nanocrystals with different morphologies and sizes and comparatively studied their electrocatalytic activities for methanol and ethanol oxidation in alkaline solutions. The chemisorbed PVP molecules transferred charge to the Pd nanocrystals, and the finer Pd nanocrystals had a higher coverage of chemisorbed PVP, and thus exposed fewer accessible surface sites, experienced more extensive PVP-to-Pd charge transfer, and were more negatively charged. The intrinsic electrocatalytic activity, represented by the electrochemical surface area (ECSA)-normalized electrocatalytic activity, of Pd nanocubes with exposed (100) facets increases with the particle size, indicating that the more negatively-charged Pd surface is less electrocatalytically active. The Pd nanocubes with average sizes between 12 and 19 nm are intrinsically more electrocatalytically active than commercial Pd black electrocatalysts, while the activity of Pd nanocubes with an averages size of 8 nm is less. This suggests that the enhancement effect of the exposed (100) facets surpasses the deteriorative effect of the negatively charged Pd surface for the Pd nanocubes with average sizes between 12 and 19 nm, whereas the deteriorative effect of the negatively charged Pd surface surpasses the enhancement effect of the exposed (100) facets for the Pd nanocubes with average sizes of 8 nm due to the extensive PVP-to-Pd charge transfer. Moreover, the Pd nanocubes with average sizes of 8 nm exhibit similar intrinsic electrocatalytic activity to the Pd nanooctahedra with (111) facets exposed and average sizes of 7 nm, indicating that the electronic structure of Pd electrocatalysts plays a more important role in influencing the electrocatalytic activity than the exposed facet. Since the chemisorbed PVP molecules block the surface sites on Pd nanocrystals that are accessible to the reactants, all Pd nanocrystals exhibit lower mass-normalized electrocatalytic activity than the Pd black electrocatalysts, and the mass-normalized electrocatalytic activity increases with the ECSA. These results clearly demonstrate that the size- and shape-dependent electrocatalytic activity of Pd nanocrystals capped with PVP for methanol and ethanol oxidation should be attributed to both the exposed facets of the Pd nanocrystals and the size-dependent electronic structures of the Pd nanocrystals resulting from the size-dependent PVP coverage and PVP-to-Pd charge transfer. Therefore, capping ligands on capped metal nanocrystals inevitably influence their surface structures and surface-mediated properties, which must be considered for a comprehensive understanding of the structure-activity relationship of capped metal nanocrystals.  相似文献   

11.
This article describes a systematic study of the galvanic replacement reaction between PtCl(6)(2-) ions and Pd nanocrystals with different shapes, including cubes, cuboctahedrons, and octahedrons. It was found that Br(-) ions played an important role in initiating, facilitating, and directing the replacement reaction. The presence of Br(-) ions led to the selective initiation of galvanic replacement from the {100} facets of Pd nanocrystals, likely due to the preferential adsorption of Br(-) ions on this crystallographic plane. The site-selective galvanic replacement resulted in the formation of Pd-Pt bimetallic nanocrystals with a concave structure owing to simultaneous dissolution of Pd atoms from the {100} facets and deposition of the resultant Pt atoms on the {111} facets. The Pd-Pt concave nanocubes with different weight percentages of Pt at 3.4, 10.4, 19.9, and 34.4 were also evaluated as electrocatalysts for the oxygen reduction reaction (ORR). Significantly, the sample with a 3.4 wt.% of Pt exhibited the largest specific electrochemical surface area and was found to be four times as active as the commercial Pt/C catalyst for the ORR in terms of equivalent Pt mass.  相似文献   

12.
We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.  相似文献   

13.
Single-crystalline and uniform nanopolyhedra, nanorods, and nanocubes of cubic CeO2 were selectively prepared by a hydrothermal method at temperatures in the range of 100-180 degrees C under different NaOH concentrations, using Ce(NO3)3 as the cerium source. According to high-resolution transmission electron microscopy, they have different exposed crystal planes: {111} and {100} for polyhedra, {110} and {100} for rods, and {100} for cubes. During the synthesis, the formation of hexagonal Ce(OH)3 intermediate species and their transformation into CeO2 at elevated temperature, together with the base concentration, have been demonstrated as the key factors responsible for the shape evolution. Oxygen storage capacity (OSC) measurements at 400 degrees C revealed that the oxygen storage takes place both at the surface and in the bulk for the as-obtained CeO2 nanorods and nanocubes, but is restricted at the surface for the nanopolyhedra just like the bulk one, because the {100}/{110}-dominated surface structures are more reactive for CO oxidation than the {111}-dominated one. This result suggests that high OSC materials might be designed and obtained by shape-selective synthetic strategy.  相似文献   

14.
A systematic study on the selective semihydrogenation of alkynes to alkenes on shape‐controlled palladium (Pd) nanocrystals was performed. Pd nanocrystals with a cubic shape and thus exposed {100} facets were synthesized in an aqueous solution through the reduction of Na2PdCl4 with L ‐ascorbic acid in the presence of bromide ions. The Pd nanocubes were tested as catalysts for the semihydrogenation of various alkynes such as 5‐decyne, 2‐butyne‐1,4‐diol, and phenylacetylene. For all substrates, the Pd nanocubes exhibited higher alkene selectivity (>90 %) than a commercial Pd/C catalyst (75–90 %), which was attributed to a large adsorption energy of the carbon–carbon triple bond on the {100} facets of the Pd nanocubes. Our approach based on the shape control of Pd nanocrystals offers a simple and effective route to the development of a highly selective catalyst for alkyne semihydrogenation.  相似文献   

15.
The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order.  相似文献   

16.
Two seed‐mediated approaches for the growth of silver nanocubes in aqueous solution have been developed. Addition of a silver‐seed solution to a mixture of cetyltrimethylammonium chloride (CTAC), silver trifluoroacetate, and ascorbic acid and heating the solution at 60 °C for 1.5 h produces uniform Ag nanocubes with tunable sizes from 23 to 60 nm by simply adjusting the volume of silver‐seed solution introduced. Alternatively, the silver‐seed solution can be injected into a mixture of cetyltrimethylammonium bromide (CTAB), silver nitrate, copper sulfate, and ascorbic acid and heated to 80 °C for 2 h to generate 46 nm silver nanocubes. Plate‐like Ag nanocrystals exposing {111} surfaces can be synthesized by reducing Ag(NH3)2+ with ascorbic acid in a CTAC solution. Relatively large Ag nanocubes were converted to cuboctahedral Au/Ag and Au nanocages and nanoframes with empty {111} faces through a galvanic replacement reaction. The nanocages showed a progressive plasmonic band red‐shift with increasing Au content. The nanocages exhibited high and stable photothermal efficiency with solution temperatures quickly reaching beyond 100 °C when irradiated with an 808 nm laser for large heat and water vapor generation.  相似文献   

17.
肖翅  田娜  周志有  孙世刚 《电化学》2020,26(1):61-72
催化剂的性能与其表面结构及组成密切相关,高指数晶面纳米晶的表面含有高密度的台阶原子等活性位点而表现出较高的催化活性. 本文综述了电化学方波电位方法用于Pt、Pd、Rh等贵金属高指数晶面结构纳米晶催化剂的制备、形成机理及其电催化性能的研究. 针对贵金属利用率问题,还着重介绍了具有较高质量活性的小粒径Pt二十四面体的制备. 在此基础上,还介绍了电化学方波电位方法用于低共熔溶剂中制备高指数晶面纳米晶,以及高指数晶面纳米催化剂的表面修饰及应用;最后对高指数晶面纳米催化剂的发展做出了展望.  相似文献   

18.
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

19.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

20.
The development of high-performance nanocatalysts relies essentially on the generation of stable and active surface sites at the atomic scale through synthetic control of the size, shape, and chemical composition of nanoscale metals and metal oxides. One promising route is to induce the exposure of catalytically active high-index facets of nanostructures through shape-controlled syntheses. We have designed and prepared two types of Pd nanoshells that are enclosed by high-index {730} and {221} facets through heteroepitaxial growth on high-index-faceted Au nanocrystals. The turnover numbers per surface atom of the high-index-faceted Pd nanoshells have been found to be 3-7 times those of Pd and Au-Pd core-shell nanocubes that possess only {100} facets in catalyzing the Suzuki coupling reaction. These results open up a potential for the development of inexpensive and highly active metal nanocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号