首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2021,32(10):3048-3052
Carbon-based fluorescent nanomaterials have gained much attention in recent years. In this work, green-photoluminescent carbon nanodots (CNDs; also termed carbon dots, CDs) with amine termination were synthesized via the hydrothermal treatment of amine-containing spermine and rose bengal (RB) molecules. The CNDs have an ultrasmall size of ∼2.2 nm and present bright photoluminescence with a high quantum yield of ∼80% which is possibly attributed to the loss of halogen atoms (Cl and I) during the hydrothermal reaction. Different from most CNDs which have multicolor fluorescence emission, the as-prepared CNDs possess excitation-independent emission property, which can avoid fluorescence overlap with other fluorescent dyes. Moreover, the weakly basic amine-terminated surface endows the CNDs with the acidotropic effect. As a result, the CNDs can accumulate in the acidic lysosomes after cellular internalization and can serve as a favorable agent for lysosome imaging. Besides, the CNDs have a negligible impact on the lysosomal morphology even after 48 h incubation and exhibit excellent biocompatibility in the used cell models.  相似文献   

2.
The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.  相似文献   

3.
Highly luminescent carbon nanodots by microwave-assisted pyrolysis   总被引:1,自引:0,他引:1  
Carbon nanodots (CDs) with a low cytotoxicity have been synthesized by one-step microwave-assisted pyrolysis of citric acid in the presence of various amine molecules. The primary amine molecules have been confirmed to serve dual roles as N-doping precursors and surface passivation agents, both of which considerably enhanced the fluorescence of the CDs.  相似文献   

4.
Biomass-based carbon nanodots(CNDs) are becoming promising fluorescent materials due to their superior optical properties and excellent biocompatibility. However, most fluorescent CNDs are prepared under high temperatures with artificial chemicals as precursors. In this work, multicolor biomass-based CNDs have been prepared by employing natural biomass as precursors through an ultrasonic-assisted method at room temperature. The multicolor biomass-based CNDs can be prepared within 10 min, and cav...  相似文献   

5.
In this communication, we report a general strategy for the production of carbon nanodots (CDs) by microwave irradiation of amino acids in the presence of acid or alkali. The resultant CDs exhibit strong photoluminescence and intense chemiluminescence enhancement of the NaIO(4)-H(2)O(2) system.  相似文献   

6.
A simple one-pot hydrothermal approach has been demonstrated for the preparation of highly water soluble and photoluminescent carbon nanodots (C-dots) from low-cost organic compounds. We found that the compounds incorporating amino and carboxylic acid groups are suitable for the preparation of highly photoluminescent and water-soluble C-dots.  相似文献   

7.
The present paper reports on a chelation enhanced fluorescence (CHEF) effect that is observed on addition of certain metal ions to phosphorus doped carbon nanodots (P-CNDs). The effect is accompanied by a large shortwave shift of the emission peak. Highly passivated P-CNDs with sizes of around 3 nm were prepared from lactose and phosphoric acid, using a one-pot low temperature solvothermal method. The nanoparticles were purified according to polarity and size. The extent of blue shift and strength of enhancement depend on metal ions and actual pH value. For instance, the P-CND complex with Al(III) has a fluorescence that is shifted to shorter wavelengths, and the fluorescence quantum yield is enhanced from 12% (for the free P-CNDs) to almost 62% at 490 nm. The fluorescence is also enhanced and shifted by the ions Zn(II) and Cd(II). It is quenched by the ions Fe(II), Fe(III), Hg(II), Cu(II) and Sn(II), among others. The enhancement is attributed to the chelation of metal ions with the passivated surface functional groups of P-CNDs, mainly those of phosphorus. Phosphorous free CNDs (prepared via HCl instead of H3PO4) and low-passivated P-CNDs (prepared for longer period of time; typically 8 h) show no enhancement. The metal ion induced enhancement led to the design of a fluorometric assay for the detection of these ions. The detection limits are 4 nM for Al(III) and 100 nM for Zn(II). The two ions were quantified in spiked pharmaceutical formulations. Recoveries typically are 102% (for n = 7).
Graphical abstract The fluorescence emission of phosphorous doped carbon nanodots is significantly enhanced and tuned after binding to Al3+, Zn2+ and Cd2+. The enhancement mechanism is attributed to chelation enhanced fluorescence (CHEF).
  相似文献   

8.
The structure–function relationship, especially the origin of absorption and emission of light in carbon nanodots (CNDs), has baffled scientists. The multilevel complexity arises due to the large number of by-products synthesized during the bottom-up approach. By performing systematic purification and characterization, we reveal the presence of a molecular fluorophore, quinoxalino[2,3-b]phenazine-2,3-diamine (QXPDA), in a large amount (∼80% of the total mass) in red emissive CNDs synthesized from o-phenylenediamine (OPDA), which is one of the well-known precursor molecules used for CND synthesis. The recorded NMR and mass spectra tentatively confirm the structure of QXPDA. The close resemblance of the experimental vibronic progression and the mirror symmetry of the absorption and emission spectra with the theoretically simulated spectra confirm an extended conjugated structure of QXPDA. Interestingly, QXPDA dictates the complete emission characteristics of the CNDs; in particular, it showed a striking similarity of its excitation independent emission spectra with that of the original synthesized red emissive CND solution. On the other hand, the CND like structure with a typical size of ∼4 nm was observed under a transmission electron microscope for a blue emissive species, which showed both excitation dependent and independent emission spectra. Interestingly, Raman spectroscopic data showed the similarity between QXPDA and the dot structure thus suggesting the formation of the QXPDA aggregated core structure in CNDs. We further demonstrated the parallelism in trends of absorption and emission of light from a few other red emissive CNDs, which were synthesized using different experimental conditions.

Herein we unveil the presence of a molecular fluorophore quinoxalino[2,3-b]phenazine-2,3-diamine (QXPDA) in a colossal amount in red emissive CNDs synthesized from o-phenylenediamine, a well-known precursor molecule used for CND synthesis.  相似文献   

9.
In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology.  相似文献   

10.
Metal-enhanced fluorescence-based RNA sensing   总被引:1,自引:0,他引:1  
  相似文献   

11.
Photoluminescence (PL) brightening is clearly observed through the direct morphology transition from isolated to thin bundled vertically- and individually freestanding single-walled carbon nanotubes (SWNTs). On the basis of the precise spectra analysis and equation-based estimation of the PL time trace, the origin of the PL brightening is consistently explained in terms of the exciton energy transfer through the tube bundles. The PL brightening is also revealed to obviously depend on SWNT diameters. Only the small-diameter rich sample can realize the PL brightening, which can be explained by the different concentrations of metallic SWNTs causing a PL quenching. Since it can be possible to fabricate brightly illuminating nanotubes on various kinds of substrates, the bundle engineering with freestanding nanotubes is expected to be a potential candidate for realizing the nanotube-based PL device fabrication.  相似文献   

12.
We described, for the first time, the metal-enhanced fluorescence from the CdTe nanocrystals spin coated on silver island films (SIFs). CdTe nanocrystals show approximately 5-fold increase in fluorescence intensity, 3-fold decrease in lifetimes, and reduction in blinking on SIF surfaces that can be observed by ensemble and single-molecule fluorescence studies. The single-molecule study also provides further insight on the heterogeneity in the fluorescence enhancement and lifetimes of the CdTe nanocrystals on both glass and SIF surfaces, which is otherwise not possible to observe using ensemble measurements.  相似文献   

13.
It is significant for cell physiology to keep the homeostasis of p H, and it is highly demanded to develop ratiometric fluorescent sensors toward p H. In this work, under mild condition, through the electrostatic interaction between carbon nanodots(CDs) and organic molecules, two novel ratiometric fluorescence hybrid nanosensors were fabricated for sensing acidic p H. These nanohybrid systems possess dual emission peaks at 455 and 527 nm under a single excitation wavelength of 380 nm in acidic p H condition.With the increasing of p H, the fluorescence of the 1,8-naphthalimide derivative completely quenches,while the blue fluorescence of CDs keeps constant. Furthermore, the CDsàorganic molecular nanohybrids exhibit excellent anti-disturbance ability, reversible p H sensing ability, and a linear response range in wide p H range respectively. Besides the ability to target lysosome, with one of the nanosensor, stimulated p H change has been successfully tracked in a ratiometric manner via fluorescence imaging.  相似文献   

14.
The photoluminescence from functionalized single-walled carbon nanotubes was found to be highly sensitive to the presence of nitroaromatic compounds such as nitrobenzene, 4-nitrotoluene, and 2,4-dinitrotoluene. The strong luminescence quenching in solution was at the upper limit of diffusion-control and also showed significant static quenching contributions. Mechanistic implication of the results and potential applications are discussed.  相似文献   

15.
《中国化学快报》2023,34(7):108107
Sun's group from Beijing University of Technology, China, prepared red-emission CDs in high yield by a solvent-free method based on o-phenylenediamine and analyzed the origin of the red emission and the formation of CDs. 5,14-Dihydroquinoxalino[2,3-b]phenazine (DHQP) was successfully isolated from the system and identified as the fluorophore of the CDs. These findings provide insight into the PL mechanism of this type of CDs and may guide the further development of CDs that can be tuned to obtain tailored properties.
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   

16.
A population balance model based on Smoluchowski aggregation kinetics is developed to explain the formation of nanorods from a colloidal suspension of spherical nanoparticles (nanodots). Our model shows that linear pearl-chain aggregates form by the oriented attachment (OA) of nanodots during the early stages of synthesis, since it occurs with a time scale smaller than the coalescence time scale of nanodots present within an aggregate. The slower coalescence step leads to the transformation of the linear pearl-chain aggregate into a smooth nanorod over a longer time scale of many hours, as observed in experiments. The attachment kinetics is modeled by a modified Brownian collision frequency, with the latter decreasing with nanorod length, leading to the experimentally observed slower growth in nanorod length at longer times. The collision frequency also includes the effects of attractive dipole-dipole and van der Waals interactions between nanodots, which are primarily responsible for OA. Our model predictions are general, and they compare favorably with available experimental data in the literature on the distribution of the aspect ratio (length to diameter) of ZnO and ZnS nanorods over different time scales.  相似文献   

17.
Photoluminescence (PL) from purified (>90%) double-wall carbon nanotubes (DWNTs), which have been synthesized by zeolite catalyst-supported chemical vapor deposition (zeolite-CCVD), of very small diameters (0.8-nm average inner tube) is reported. The PL contour mappings for various ratios (1-90%) of double- versus single-wall carbon nanotubes by thermal oxidation have enabled us to unambiguously identify the chirality of inner tubes for the DWNTs synthesized. After the extensive high-temperature oxidation at 700 degrees C, high-purity (>90%) DWNTs of approximately 0.8 nm inner diameter are obtained, and most of these correspond to the DWNTs having inner tubes with chiralities of (7,5), (7,6), and (9,4).  相似文献   

18.
In an effort to turn waste into wealth, Reactive Red 2 (RR2), a common and refractory organic pollutant in industrial wastewater, has been employed for the first time as a precursor to synthesize carbon nanodots (CNDs) by a facile, green and low-cost route, without utilization of any strong acids or other oxidizers. The detailed characterizations have confirmed that the synthesized CNDs exhibit good water dispersibility, with a mean particle size of 2.43 nm and thickness of 1–3 layers. Importantly, the excellent fluorescence properties and much reduced biotoxicity of the CNDs confer its potential applications in further biological imaging, which has been successfully verified in both in vitro (cell culture) and in vivo (zebrafish) model systems. Thus, it is demonstrated that the synthesized CNDs exhibit nice biocompatibility and fluorescence properties for bioimaging. This work not only provides a novel economical and environmentally friendly approach in recycling a chemical pollutant, but also greatly promotes the potential application of CNDs in biological imaging.

The pollutant reactive red 2 was employed to synthesize fluorescent carbon nanodots allowing biological imaging in vitro and in vivo.  相似文献   

19.
Quantum-sized carbon dots for bright and colorful photoluminescence   总被引:8,自引:0,他引:8  
We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号