首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular modeling and extensive experimental studies are used to study DNA distortions induced by binding platinum(II)-containing fragments derived from cisplatin and a new class of photoactive platinum anticancer drugs. The major photoproduct of the novel platinum(IV) prodrug trans,trans,trans-[Pt(N(3))(2)(OH)(2)(py)(2)] (1) contains the trans-{Pt(py)(2)}(2+) moiety. Using a tailored DNA sequence, experimental studies establish the possibility of interstrand binding of trans-{Pt(py)(2)}(2+) (P) to guanine N7 positions on each DNA strand. Ligand field molecular mechanics (LFMM) parameters for Pt-guanine interactions are then derived and validated against a range of experimental structures from the Cambridge Structural Database, published quantum mechanics (QM)/molecular mechanics (MM) structures of model Pt-DNA systems and additional density-functional theory (DFT) studies. Ligand field molecular dynamics (LFMD) simulation protocols are developed and validated using experimentally characterized bifunctional DNA adducts involving both an intra- and an interstrand cross-link of cisplatin. We then turn to the interaction of P with the DNA duplex dodecamer, d(5'-C(1)C(2)T(3)C(4)T(5)C(6)G(7)T(8)C(9)T(10)C(11)C(12)-3')·d(5'-G(13)G(14)A(15)G(16)A(17)C(18)G(19)A(20)G(21)A(22)G(23)G(24)-3') which is known to form a monofunctional adduct with cis-{Pt(NH(3))(2)(py)}. P coordinated to G(7) and G(19) is simulated giving a predicted bend toward the minor groove. This is widened at one end of the platinated site and deepened at the opposite end, while the P-DNA complex exhibits a global bend of ~67° and an unwinding of ~20°. Such cross-links offer possibilities for specific protein-DNA interactions and suggest possible mechanisms to explain the high potency of this photoactivated complex.  相似文献   

2.
The synthesis and X-ray structure (as the tetrahydrate) of the platinum(IV) complex trans,trans,trans-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] 3 are described and its photochemistry and photobiology are compared with those of the cis isomer cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] 4. Complexes 4 and 3 are potential precursors of the anticancer drug cisplatin and its inactive trans isomer transplatin, respectively. The trans complex 3 is octahedral, contains almost linear azide ligands, and adopts a layer structure with extensive intermolecular hydrogen bonding. The intense azide-to-platinum(IV) charge-transfer band of complex 3 (285 nm; epsilon=19 500 M(-1) cm(-1)) is more intense and bathochromically shifted relative to that of the cis isomer 4. In contrast to transplatin, complex 3 rapidly formed a platinum(II) bis(5'-guanosine monophosphate) (5'-GMP) adduct when irradiated with UVA light, and did not react in the dark. Complexes 3 and 4 were non-toxic to human skin cells (keratinocytes) in the dark, but were as cytotoxic as cisplatin on irradiation for a short time (50 min). Damage to the DNA of these cells was detected by using the "comet" assay. Both trans- and cis-diammine platinum(IV) diazide complexes therefore have potential as photochemotherapeutic agents.  相似文献   

3.
Platinum(IV) am(m)ine complexes are of interest as potential anticancer pro-drugs, but there are few reports of their acid-base properties. We have studied the acid-base properties of three photoactivatable anticancer platinum(IV)-diazidodiam(m)ine complexes (cis,trans,cis-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)], trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)], and cis,trans-[Pt(IV)(N(3))(2)(OH)(2)(en)]) using multinuclear NMR methods and potentiometry. In particular, the combination of both direct and indirect techniques for the detection of (15)N signals has allowed changes of the chemical shifts to be followed over the pH range 1-11; complementary (14)N NMR studies have been also carried out. A distinct pK(a) value of approximately 3.4 was determined for all the investigated complexes, involving protonation/deprotonation reactions of one of the axial hydroxido groups, whereas a second pH-dependent change for the three complexes at approximately pH 7.5 appears not to be associated with a loss of an am(m)ine or hydroxido proton from the complex. Our findings are discussed in comparison with the limited data available in the literature on related complexes.  相似文献   

4.
Diazido Pt(IV) complexes are inert stable prodrugs that can be photoactivated to produce Pt(II) species with promising anticancer activity. Our studies of the photochemistry of Pt(IV) complexes, [Pt(X)(2) (Y)(2) (Z)(2) ](0/-1) (X=N-ligands (NH(3) , pyridine, etc.)/S(CH(3) )(2) /H(-) , Y=(pseudo)halogen (N(3) (-) , I(-) ), Z=OR(-) , R=H, Ac) by time-dependent density functional theory (TDDFT) show close agreement with spectroscopic data. Broad exploration of cis/trans geometries, trans influences, the nature of the OR(-) and (pseudo)halogen ligands, electron-withdrawing/donating/delocalising substituents on the N-ligands, and intramolecular H?bonds shows that: 1)?the design of platinum(IV) complexes with intense bands shifted towards longer wavelengths (from 289 to ~330?nm) can be achieved by introducing intramolecular H?bonds involving the OH ligands and 2-hydroxyquinoline or by iodido ligands; 2)?mesomeric electron-withdrawing substituents on pyridine result in low-energy absorption with significant intensity in the visible region; and 3)?the distinct makeup of the molecular orbitals involved in the electronic transitions for cis/trans-{Pt(N(3) )(2) } isomers results in different photoproducts. In general, the comparison of the optimised geometries shows that Pt(IV) complexes with longer Pt?L bonds are more likely to undergo photoreduction with longer-wavelength light. The novel complex trans,trans,trans-[Pt(N(3) )(2) (OH)(2) (NH(3) )(4-nitropyridine)] with predicted absorption in the visible region has been synthesised. The experimental UV/Vis spectrum in aqueous solution correlates well with the intense band in the computed spectrum, whereas the overlay in the low-energy region can be improved by a solvent model. This combined computational and experimental study shows that TDDFT can be used to tune the coordination environment for optimising photoactive Pt(IV) compounds as anticancer agents.  相似文献   

5.
The synthesis, characterization, and cytotoxicity of eight new platinum(IV) complexes having the general formula cis,cis,trans-[Pt(NH(3))(2)Cl(2)(O(2)CNHR)(2)] are reported, where R = tert-butyl (4), cyclopentyl (5), cyclohexyl (6), phenyl (7), p-tolyl (8), p-anisole (9), 4-fluorophenyl (10), or 1-naphthyl (11). These compounds were synthesized by reacting organic isocyanates with the platinum(IV) complex cis,cis,trans-[Pt(NH(3))(2)Cl(2)(OH)(2)]. The electrochemistry of the compounds was investigated by cyclic voltammetry. The aryl carbamate complexes 7-11 exhibit reduction peak potentials near -720 mV vs Ag/AgCl, whereas the alkyl carbamate complexes display reduction peak potentials between -820 and -850 mV vs Ag/AgCl. The cyclic voltammograms of cis,cis,trans-[Pt(NH(3))(2)Cl(2)(O(2)CCH(3))(2)] (1), cis,cis,trans-[Pt(NH(3))(2)Cl(2)(O(2)CCF(3))(2)] (2), and cis-[Pt(NH(3))(2)Cl(4)] (3) were measured for comparison. Density functional theory studies were undertaken to investigate the electronic structures of 1-11 and to determine their adiabatic electron affinities. A linear correlation (R(2) = 0.887) between computed adiabatic electron affinities and measured reduction peak potentials was discovered. The biological activity of 4-11 and, for comparison, cisplatin was evaluated in human lung cancer A549 and normal MRC-5 cells by the MTT assay. The compounds exhibit comparable or slightly better activity than cisplatin against the A549 cells. In MRC-5 cells, all are equally or slightly less cytotoxic than cisplatin, except for 4 and 5, which are more toxic.  相似文献   

6.
The photodecomposition of the anticancer complex trans,trans,trans-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] in acidic aqueous solution, as well as in phosphate-buffered saline (PBS), induced by UVA light (centred at λ = 365 nm) has been studied by multinuclear NMR spectroscopy. We show that the photoreaction pathway in PBS, which involves azide release, differs from that in acidic aqueous conditions, under which N(2) is a major product. In both cases, a number of trans-{N-Pt(II/IV)-NH(3)} species were also observed as photoproducts, as well as the evolution of O(2) and release of free ammonia with a subsequent increase in pH. The results from this study illustrate that photoinduced reactions of Pt(IV)-diazido derivatives can lead to novel reaction pathways, and therefore potentially to new cytotoxic mechanisms in cancer cells.  相似文献   

7.
Recently synthesized by the group of Sadler, the platinum(IV) diazido complexes [Pt(N(3))(2)(OH)(2)(L')(L')] (L' and L' are N-donor ligands) have potential to be used as photoactivatable metallodrugs in cancer chemotherapy. In the present study optimized structures and UV-Vis electronic spectra of trans,trans,trans- and cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(2)] (1t and 1c, respectively) as well as cis,trans,cis-[Pt(N(3))(2)(OH)(2)(L)(2)] (L = NH(3), NH(2)CH(3), NF(3), PH(3), PF(3), H(2)O, CO, OH(-), CN(-), py, imid; 2c-11c) and cis,trans-[Pt(N(3))(2)(OH)(2)(bpy)] (12c) complexes were predicted using density functional theory (DFT). The ground state electronic structures of all complexes were analyzed with the help of the natural bond orbital analysis (NBO). The electronic spectra of 1c and 1t were computed using time-dependent density functional theory (TDDFT) with five different density functionals and the ab initio CASSCF/CASPT2 method (for the five lowest energy transitions). The best agreement with available experiments was found in the case of the long-range corrected ωB97X functional. The electronic transitions were characterized by the analysis of the natural transition orbitals (NTO). The low-lying excited singlet states of 1t and 1c have significant azide-to-platinum(IV) charge-transfer character (LMCT). Geometry optimization of the three lowest singlet excited states performed using TDDFT results in the simultaneous dissociation of two azide ligands with the formation of the azidyl radicals N(3)˙ and photoreduction of Pt(IV) to Pt(II). Variation of the ligand L does not strongly affect the nature and the relative energies of the low-lying states. It is shown that the replacement of the OH(-) groups in 1c by OPh(-) ligands results in the red shift of the intense N(3)(-)→Pt LMCT band and the appearance of transitions with significant intensity in the visible region of the spectrum. The dissociative nature of the low-lying unoccupied orbitals remains unaffected. These theoretical results may suggest new experimental routes for the improvement of the photochemical activity of Pt(IV) diazido complexes.  相似文献   

8.
Oehlsen ME  Qu Y  Farrell N 《Inorganic chemistry》2003,42(18):5498-5506
A possible explanation for the low bioavailability of platinum antitumor compounds is their high reactivity with the sulfur-containing tripeptide glutathione (GSH; deprotonated GSH = SG). GSH is located in the intracellular matrix of the cell with a normal concentration of 5-10 mM. In vivo, only a small fraction of the administered drug will migrate into the cell, resulting in relatively high concentrations of GSH compared to that of the drug. The products of the reactions of [[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4) (BBR3464; 1,0,1/t,t,t, n = 6), [[trans-PtCl(NH(3))(2)](2)-mu-(H(2)N(CH(2))(6)NH(2))](NO(3))(2) (BBR3005; 1,1/t,t, n = 6), [[trans-PtCl(NH(3))(2)](2)-mu-(H(2)N(CH(2))(3)NH(2)(CH(2))(4)NH(2))]Cl(3) (BBR3571; 1,1/t,t-spermidine, n = 3, 4), and trans-[PtCl(2)(NH(3))(2)] (t-DDP) with reduced GSH in phosphate-buffered saline (pH 7.35) have been characterized by (1)H, (195)Pt, and (1)H(-)(15)N gradient heteronuclear single-quantum coherence NMR spectroscopy and high-performance liquid chromatography (HPLC) coupled with electrospray ionization time-of-flight mass spectrometry to determine likely metabolites of the complexes with GSH. Chemical shifts (NMR) and retention times (HPLC) established via analysis of the t-DDP profile served as a fingerprint to compare results obtained for the products afforded by the degradation of the polynuclear compounds by GSH. Identical kinetic profiles and chemical shifts between the metabolites and the t-DDP/GSH products allowed identification of the final product for the 1:2 Pt:GSH reaction as a dinuclear species [[trans-Pt(SG)(NH(3))(2)](2)-mu-SG], in which glutathione bridges the two platinum centers via only the sulfur atom.  相似文献   

9.
The physical and biological properties have been determined for three Pt(IV) complexes with trans amine ligands: trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(isopropylamine)] (1(IV)), trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(methylamine)] (2(IV)) and trans,trans,trans-[PtCl(2)(OH)(2)(isopropylamine)(methylamine)] (3(IV)). The crystal structures of 2(IV) and 3(IV) reveal substantial strain resulting from repulsion between the amine ligands and the chlorido and hydroxido ligands. All three complexes have reduction potentials in the range -666 to -770 mV, values usually associated with high resistance to reduction and low cytotoxicity. However, the complexes all demonstrate surprisingly high cytotoxicity with values and trends that closely follow those seen for the Pt(II) congeners of these complexes. These results are consistent with more rapid reduction of the Pt(IV) complexes than would be expected based on the reduction potentials, perhaps associated with the trans arrangement of the chlorido ligands.  相似文献   

10.
The reaction of 2 equiv of LiSeCC-n-C(5)H(11) (1) with cis-PtCl(2)(Ph(3)P)(2) (2) gives a mixture of the cis and trans isomers of Pt(Ph(3)P)(2)(SeCC-n-C(5)H(11))(2) (3), which slowly isomerizes in CH(2)Cl(2) to the preferred trans form trans-3. The closely related cis-[Pt(dppf)(2)(SeCC-n-C(5)H(11))(2)] (4) (dppf = bis(diphenylphosphino)ferrocene) was prepared by a similar metathetical reaction using the platinum chloride complex of the chelating dppf to impose the cis geometry. The structures of the cis and trans complexes have been investigated in solution by heteronuclear NMR ((31)P, (77)Se, and (195)Pt) and, in the cases of trans-3 and 4, characterized in the solid state by single-crystal X-ray diffraction. Changing the coordination geometry from cis to trans induces significant changes in the structural and spectroscopic parameters, which do not comply with the previously anticipated donor-acceptor properties of selenolate ligands.  相似文献   

11.
A series of cationic T-shaped 14-electron boryl complexes of the type trans-[(Cy(3)P)(2)Pt{B(X)X'}](+) (X=Br; X'=ortho-tolyl, tBu, NMe(2), piperidyl, Br; XX'=(NMe(2))(2), catecholato) were synthesized by halide abstraction from trans-[(Cy(3)P)(2)Pt(Br){B(X)X'}] (Cy=cyclohexyl) with Na[BAr(f) (4)] (Ar(f)=3,5-(CF(3))(2)C(6)H(3)), K[B(C(6)F(5))(4)], or Na[BPh(4)]. X-ray diffraction studies were performed on all compounds, revealing a subtle correlation between the trans-influence of the boryl moiety and the Pt--H and Pt--C separations. However, no notable agostic C--H interaction with the platinum center was detected. trans-[(Cy(3)P)(2)Pt(BCat)](+) (Cat=catecholato), the complex with the shortest Pt--H and Pt--C distances, was treated with Lewis bases (L), forming compounds of the type trans-[(Cy(3)P)(2)Pt(L)(BCat)](+), thus proving a decisive influence of the degree of trans-influence exerted by the boryl ligands on the chemical reactivity of the title complexes. Another point that was investigated and clarified is the different behavior of trans-[(Cy(3)P)(2)Pt(Br){B(Br)Mes}] (Mes=mesityl) towards K[B(C(6)F(5))(4)] with formation of the borylene species trans-[(Cy(3)P)(2)Pt(Br)(BMes)](+).  相似文献   

12.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

13.
The platinum butadiynyl complex trans-(C(6)F(5))(p-tol(3)P)(2)Pt(C≡C)(2)H and a CuI adduct of a 1,10-phenanthroline based 33-membered macrocycle react in the presence of K(2)CO(3) and I(2) or O(2) to give a rotaxane (ca. 9%) in which the macrocycle is threaded by the sp carbon chain of trans,trans-(C(6)F(5))(p-tol(3)P)(2)Pt(C≡C)(4)Pt(Pp-tol(3))(2)(C(6)F(5)). The crystal structure and macrocycle/axle electronic interactions are analyzed in detail.  相似文献   

14.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

15.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   

16.
Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt(II)(NH(3))(2)(μ-OAc)(2)Pt(II)(NH(3))(2)](NO(3))(2), [1](NO(3))(2), with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species cis-[XPt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(2)X](NO(3))(2), where X is Cl in [2](NO(3))(2) or Br in [3](NO(3))(2), respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈2.6 ?) Pt-Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt-X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of (1)H, (13)C, (14)N, and (195)Pt NMR spectroscopy was used to characterize [1](2+)-[3](2+) in solution. All resonances shift downfield upon oxidation of [1](2+) to [2](2+) and [3](2+). For the platinum(III) complexes, the (14)N and (195)Pt resonances exhibit decreased line widths by comparison to those of [1](2+). Density functional theory calculations suggest that the decrease in the (14)N line width arises from a diminished electric field gradient at the (14)N nuclei in the higher valent compounds. The oxidation of [1](NO(3))(2) with the alternative oxidizing agent bis(trifluoroacetoxy)iodobenzene affords the novel tetranuclear complex cis-[(O(2)CCF(3))Pt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(μ-NH(2))](2)(NO(3))(4), [4](NO(3))(4), also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed.  相似文献   

17.
We report on (i) the reactivity of the title compound trans-[Cl(PMe(3))(2)Pt{μ-BN(SiMe(3))(2)C=C}Ph] (1), which underwent a photochemical rearrangement reaction to afford the platinum boryl complex trans-[Cl(PMe(3))(2)PtBN(SiMe(3))(2)C≡CPh] (2), (ii) a ring-opening reaction by chemoselective boron-carbon bond cleavage resulting in the amino(vinyl)borane trans-[Cl(PMe(3))(2)PtCH=C(BClN(SiMe(3))(2))Ph] (3), and (iii) a Cl-Br ligand exchange on the platinum atom yielding the Br-derivate trans-[Br(PMe(3))(2)Pt{μ-BN(SiMe(3))(2)C=C}Ph] (4). All compounds were fully characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction analysis.  相似文献   

18.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

19.
The oxidative addition of the salt [{SC(NMe(2))(2)}(2)]Cl(2).2H(2)O (1), the disulfide-like dimerized form of 1,1,3,3-tetramethylthiourea (tmtu), to Pt(II) chloro am(m)ine compounds is described. Oxidation of the [PtCl(3)(NH(3))](-) anion with 1 in methanol yields cis-[PtCl(4)(NH(3))L] (2; L = tmtu) as the result of the trans addition of one tmtu and one chloro ligand. The same mode of oxidation is found in reactions of 1 with [PtCl(dien)](+) (dien = diethylenetriamine) and trans-[PtCl(2)(NH(3))(2)]. In these cases, however, the oxidation is followed by (light-independent) cis,trans isomerizations, giving trans,mer-[PtCl(2)(dien)L]Cl(2) (4) and fac-[PtCl(3)(NH(3))(2)L]Cl.0.5MeOH (6), respectively. The single-crystal X-ray structures of 2 and trans,mer-[PtCl(2)(dien)L](BF(4))(2) (4a) have been determined. 2: monoclinic, space group P2(1)/n, a = 6.280(1) ?, b = 13.221(3) ?, c = 16.575(2) ?, beta = 96.45(1) degrees, Z = 4. 4a: monoclinic, space group C2/m, a = 21.093(5) ?, b = 8.9411(9) ?, c = 14.208(2) ?, beta = 124.65(2) degrees, Z = 4. The tmtu ligands are S-bound. In 2 a pronounced trans influence of the S-donor ligand on the Pt-Cl bond (2.370(1) ?) trans to sulfur is observed. The unusual acidity of the Pt(IV) complexes exhibiting tmtu coordination trans to chloride is attributed to hydrolysis of the labilized Pt-Cl(trans) bond, which is supported by ion sensitive electrode measurements. An upfield shift of the (195)Pt resonances is found on changing the ligand combination from NCl(4)S (2) to N(3)Cl(2)S (4). This order correlates with the trans influences of the ligands: tmtu > am(m)ine > chloride. The cytotoxicity of 2 and 6 in L1210 cell lines is reported and discussed in terms of a possible mechanism of action of the compounds invivo. It is suggested that tmtu may act as a lipophilic carrier ligand and therefore enhance the cellular uptake of the new potential Pt(IV) drugs.  相似文献   

20.
trans-[PtCl2(Am)(pip-pip)] x HCl complexes, where Am = ammine, methylamine and dimethylamine, react with ubiquitin to form 1:1 covalent adducts. The platinum complexes bind exclusively to Met1 of ubiquitin forming trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] adducts. These adducts are reactive towards nucleophiles and react with deoxyguanosine (dGMP) to form the ternary trans-[Pt(dGMP)(S-Met1-Ub) (Am)(pip-pip)] complex which is stable in water and even in the presence of excess glutathione (GSH). Reaction of trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] with GSH resulted in the rapid formation of the ternary complex trans-[Pt(GS)(S-Met1-Ub)(Am)(pip-pip)] which was not stable and slowly lost the platinum moiety; after 7 days the platinum moiety was completely removed and the native ubiquitin was regenerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号