首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
For 68 temporal bones, frequency curves for the round window volume displacement have been measured for a constant sound pressure at the eardrum. Phase curves were measured for 33 of the specimens. The levels averaged amplitude curve is approximately flat below 1 kHz, where the round window volume displacement per unit sound pressure at the eardrum is 6.8 X 10(-5) mm3/Pa, and falls off by about 15 dB/oct at higher frequencies. For the 20 ears having the largest sound transmission magnitude at low frequencies, the corresponding amplitude curve is displaced about 5 dB towards higher levels. The phase of the round window volume displacement lags the eardrum sound pressure phase. In average for 33 temporal bones, the phase lag increases from zero at the lowest frequencies to pi near 2 kHz and to about 1.5 pi at 10 kHz.  相似文献   

2.
The ear canal sound pressure and the malleus umbo velocity with bone conduction (BC) stimulation were measured in nine ears from five cadaver heads in the frequency range 0.1 to 10 kHz. The measurements were conducted with both open and occluded ear canals, before and after resection of the lower jaw, in a canal with the cartilage and soft tissues removed, and with the tympanic membrane (TM) removed. The sound pressure was about 10 dB greater in an intact ear canal than when the cartilage part of the canal had been removed. The occlusion effect was close to 20 dB for the low frequencies in an intact ear canal; this effect diminished with sectioning of the canal. At higher frequencies, the resonance properties of the ear canal determined the effect of occluding the ear canal. Sectioning of the lower jaw did not significantly alter the sound pressure in the ear canal. The sound radiated from the TM into the ear canal was investigated in four temporal bone specimens; this sound is significantly lower than the sound pressure in an intact ear canal with BC stimulation. The malleus umbo velocity with air conduction stimulation was investigated in nine temporal bone specimens and compared with the umbo velocity obtained with BC stimulation in the cadaver heads. The results show that for a normal open ear canal, the sound pressure in the ear canal with BC stimulation is not significant for BC hearing. At threshold levels and for frequencies below 2 kHz, the sound in the ear canal caused by BC stimulation is about 10 dB lower than air conduction hearing thresholds; this difference increases at higher frequencies. However, with the ear canal occluded, BC hearing is dominated by the sound pressure in the outer ear canal for frequencies between 0.4 and 1.2 kHz.  相似文献   

3.
Using an audiometer,the effect of the noise level upon temporarythreshold shift(TTS)for five trained normal subjects(left ear only)was studied.The measurements were carried out after 6 min exposure(in third octave band)for different sound pressure levels ranging between 75-105 dB at three test fre-quencies 2,3,and 4 kHz.The results indicated that at exposure to noise of soundpressure level(SPL)above 85 dB,TTS increases linearly with ths SPL for all thetest frequencies.The work had extended to study the recovery curves for the sameears.The results indicated that the reduction in TTS on doubling the recoverytimes,for the two sound pressure levels 95 dB and 105 dB,occurs at a rate of near-ly 3 dB.The comparison of the recovery curve at 3 kHz with that calculated usingWard's general equation for recovery was made.Finally,to study the values ofTTS produced by exposure to certain noise at different test frequencies,distribu-tion curves for two recovery times were plotted representing TTS values,for anexposure  相似文献   

4.
Sound pressure was mapped in the bony ear canal of gerbils during closed-field sound stimulation at frequencies from 0.1 to 80 kHz. A 1.27-mm-diam probe-tube microphone or a 0.17-mm-diam fiber-optic miniature microphone was positioned along approximately longitudinal trajectories within the 2.3-mm-diam ear canal. Substantial spatial variations in sound pressure, sharp minima in magnitude, and half-cycle phase changes occurred at frequencies >30 kHz. The sound frequencies of these transitions increased with decreasing distance from the tympanic membrane (TM). Sound pressure measured orthogonally across the surface of the TM showed only small variations at frequencies below 60 kHz. Hence, the ear canal sound field can be described fairly well as a one-dimensional standing wave pattern. Ear-canal power reflectance estimated from longitudinal spatial variations was roughly constant at 0.2-0.5 at frequencies between 30 and 45 kHz. In contrast, reflectance increased at higher frequencies to at least 0.8 above 60 kHz. Sound pressure was also mapped in a microphone-terminated uniform tube-an "artificial ear." Comparison with ear canal sound fields suggests that an artificial ear or "artificial cavity calibration" technique may underestimate the in situ sound pressure by 5-15 dB between 40 and 60 kHz.  相似文献   

5.
Previous physiological studies investigating the transfer of low-frequency sound into the cochlea have been invasive. Predictions about the human cochlea are based on anatomical similarities with animal cochleae but no direct comparison has been possible. This paper presents a noninvasive method of observing low frequency cochlear vibration using distortion product otoacoustic emissions (DPOAE) modulated by low-frequency tones. For various frequencies (15-480 Hz), the level was adjusted to maintain an equal DPOAE-modulation depth, interpreted as a constant basilar membrane displacement amplitude. The resulting modulator level curves from four human ears match equal-loudness contours (ISO226:2003) except for an irregularity consisting of a notch and a peak at 45 Hz and 60 Hz, respectively, suggesting a cochlear resonance. This resonator interacts with the middle ear stiffness. The irregularity separates two regions of the middle ear transfer function in humans: A slope of 12 dB/octave below the irregularity suggests mass-controlled impedance resulting from perilymph movement through the helicotrema; a 6-dB/octave slope above the irregularity suggests resistive cochlear impedance and the existence of a traveling wave. The results from four guinea pig ears showed a 6-dB/octave slope on either side of an irregularity around 120 Hz, and agree with published data.  相似文献   

6.
Drive pressure to stapes velocity (V(st)) transfer function measurements are collected and compared for human cadaveric temporal bones with the drive pressure alternately on the ear canal (EC) and middle ear cavity (MEC) sides of the tympanic membrane (TM), in order to predict the performance of proposed middle-ear implantable acoustic hearing aids, as well as provide additional data for examining human middle ear mechanics. The chief finding is that, in terms of the V(st) response, MEC stimulation performs at least as well as EC stimulation below 8 kHz, provided that the EC is unplugged. Plugging the EC causes a reduced response for MEC drive below 2 kHz, due to a corresponding reduction of the pressure difference between the two sides of the TM. Between 8 and 11 kHz, the MEC drive transfer functions feature an approximately 17 dB drop in magnitude below the EC drive case, the cause of which remains unknown. The EC drive transfer functions reported here feature significantly less magnitude roll-off above 1 kHz than previous studies [with a slope of -2.3 vs -6.7 dB/octave for Aibara et al., Hear. Res. 152, 100-109 (2001)], and significantly more phase group delay (134 vs 62 micros for Aibara et al.).  相似文献   

7.
The sound field inside a model human ear canal has been computed, to show both longitudinal variations along the canal length and transverse variations through cross-sectional slices. Two methods of computation were used. A modified horn equation approach parametrizes the sound field with a single coordinate, the position along a curved center axis-this approach can accommodate the curvature and varying cross-sectional area of the ear canal but cannot compute transverse variations of the sound field. A boundary element method (BEM) was also implemented to compute the full three-dimensional sound field. Over 2000 triangular mesh elements were used to represent the ear canal geometry. For a plane piston source at the entrance plane, the pressure along the curved center axis predicted by the two methods is in good agreement, for frequencies up to 15 kHz, for four different ear canals. The BEM approach, though, reveals spatial variations of sound pressure within each canal cross section. These variations are small below 4 kHz, but increase with frequency, reaching 1.5 dB at 8 kHz and 4.5 dB at 15 kHz. For source configurations that are more realistic than a simple piston, large transverse variations in sound pressure are anticipated in the vicinity of the source.  相似文献   

8.
Bone conduction (BC) relative to air conduction (AC) sound field sensitivity is here defined as the perceived difference between a sound field transmitted to the ear by BC and by AC. Previous investigations of BC-AC sound field sensitivity have used different estimation methods and report estimates that vary by up to 20 dB at some frequencies. In this study, the BC-AC sound field sensitivity was investigated by hearing threshold shifts, ear canal sound pressure measurements, and skull bone vibrations measured with an accelerometer. The vibration measurement produced valid estimates at 400 Hz and below, the threshold shifts produced valid estimates at 500 Hz and above, while the ear canal sound pressure measurements were found erroneous for estimating the BC-AC sound field sensitivity. The BC-AC sound field sensitivity is proposed, by combining the present result with others, as frequency independent at 50 to 60 dB at frequencies up to 900 Hz. At higher frequencies, it is frequency dependent with minima of 40 to 50 dB at 2 and 8 kHz, and a maximum of 50 to 60 dB at 4 kHz. The BC-AC sound field sensitivity is the theoretical limit of maximum attenuation achievable with ordinary hearing protection devices.  相似文献   

9.
Experimental measurements of changes in the acoustic admittance of the eardrum caused by stapedius muscle contractions in human subjects are used to develop and electroacoustic analogue model of the middle ear. In this model the stapedius muscle is included as an explicit functional unit. The acoustical characteristics of the external ear canal are also included. The model is extensively evaluated by comparing its properties with the known characteristics of real ears of humans and other animals. Subsequently, the model is used to predict the effects of the acoustic reflex on middle ear sound transmission, which cannot easily be measured in humans. The model predicts attenuation of potentially hazardous high level sounds at frequencies below 1 kHz of up to about 10 dB, but very little effect at higher frequencies unless the reflex-eliciting stimulus is of sufficient intensity to cause partial disarticulation of the incudo-stapedial joint by stapedius muscle contraction. Overall attenuation for typical industrial noises is unlikely to be greater than approximately 3 dB(A) and will probably be even less in practice, resulting in little effective protection from the harmful effects of high intensity noise. It is considered that the model will be of benefit in the analysis of middle ear function, including the interpretation of audiological measurements of eardrum impedance and acoustic reflex response. This should lead to more versatile diagnosis of peripheral auditory dysfunction than has been possible hitherto.  相似文献   

10.
A theoretical model for calculating the variation of sound pressure within the ear canal is presented. The theory is an extension of the horn equation approach, and accounts for the variation of cross-sectional area and curvature of the ear canal along its length. Absorption of acoustic energy at the eardrum is included empirically through an effective eardrum impedance that acts at a single location in the canal. For comparison, measurements of the distribution of sound pressure have been made in two replica ear canals. Both replicas have geometries that duplicate, as nearly as possible, that of a real human ear canal, except that they have been scaled up in size to increase the precision of measurements. One of the replicas explicitly contains a load impedance to provide acoustical absorption at a single eardrum position. Agreement between theory and experiment was good. It is clear that at higher frequencies (above about 6 kHz in human ear canals), this theoretical approach is preferable to the more usual "uniform cylinder" approximation for the ear canal. At higher frequencies, there is no unique eardrum pressure; rather, very large variations of sound pressure are found over the tympanic membrane surface.  相似文献   

11.
A procedure is described for determining the absolute sound pressure at the inner end of the ear canal when a sound source is coupled to the ear, for frequencies in the range 8-20 kHz. The transducer that generates the sound is coupled to the ear canal through a lossy tube, yielding a source impedance that is approximately matched to the characteristic impedance of the ear canal. A small microphone is located in the coupling tube close to the entrance to the ear canal. Calibration is carried out by measuring the response at this microphone when an impulse is applied at the transducer. To estimate the sound pressure at the medial end of the ear canal, the Fourier transform of this impulse response is corrected by an all-pole function in which the poles are estimated from the minima in this Fourier transform. Data on individual ear canals are presented in terms of gain functions relating the sound pressure at the medial end of the ear canal to the sound pressure when the coupling tube is blocked. The average gain function for a group of adult ears increases from 2 to 12 dB over the frequency range 8-20 kHz, in rough agreement with data from ear-canal models. Possible sources of error in the calibration procedure are discussed.  相似文献   

12.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

13.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

14.
Behavioral studies of hearing loss produced by exposure to ototraumatic agents in experimental animals, combined with the anatomical evaluation of end-organ pathology, have provided useful information about the relation between dysfunction and pathology. However, in order to attribute a given hearing loss to some pattern of cochlear damage, it is necessary to test each ear independently. The objective of the present study was to evaluate attenuation measured behaviorally and protection to the cochlea provided by removal of the malleus and incus in noise-exposed chinchillas. Results from one behaviorally trained chinchilla with ossicular removal indicated a conductive hearing loss that varied from 41 dB at 0.125 kHz to 81 dB at 4.8 kHz and averaged 60 dB. Counts of missing sensory cells in ears of seven chinchillas with unilateral ossicular removal and exposure to noise (octave band centered at 0.5 kHz, 95 dB SPL, for durations up to 216 days, or centered at 4.0 kHz, 108 dB SPL, for 1.75 h) showed no more cell loss on the protected side than in age-matched control ears. From these data it is concluded that ossicular removal provides enough attenuation to protect the chinchilla cochlea from damage during these noise exposures, and that it will insure monaural responses behaviorally as long as the hearing loss in the test ear does not exceed that in the ear with ossicular removal by approximately 50 dB at any frequency.  相似文献   

15.
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure.  相似文献   

16.
Toneburst-evoked auditory brainstem responses (ABRs) were recorded in a captive subadult male leopard seal. Three frequencies from 1 to 4 kHz were tested at sound levels from 68 to 122 dB peak equivalent sound pressure level (peSPL). Results illustrate brainstem activity within the 1-4 kHz range, with better hearing sensitivity at 4 kHz. As is seen in human ABR, only wave V is reliably identified at the lower stimulus intensities. Wave V is present down to levels of 82 dB peSPL in the right ear and 92 dB peSPL in the left ear at 4 kHz. Further investigations testing a wider frequency range on seals of various sex and age classes are required to conclusively report on the hearing range and sensitivity in this species.  相似文献   

17.
The shape of the auditory filter was estimated at three center frequencies, 0.5, 1.0, and 2.0 kHz, for five subjects with unilateral cochlear impairments. Additional measurements were made at 1.0 kHz using one subject with a unilateral impairment and six subjects with bilateral impairments. Subjects were chosen who had thresholds in the impaired ears which were relatively flat as a function of frequency and ranged from 15 to 70 dB HL. The filter shapes were estimated by measuring thresholds for sinusoidal signals (frequency f) in the presence of two bands of noise, 0.4 f wide, one above and one below f. The spectrum level of the noise was 50 dB (re: 20 mu Pa) and the noise bands were placed both symmetrically and asymmetrically about the signal frequency. The deviation of the nearer edge of each noise band from f varied from 0.0 to 0.8 f. For the normal ears, the filters were markedly asymmetric for center frequencies of 1.0 and 2.0 kHz, the high-frequency branch being steeper. At 0.5 kHz, the filters were more symmetric. For the impaired ears, the filter shapes varied considerably from one subject to another. For most subjects, the lower branch of the filter was much less steep than normal. The upper branch was often less steep than normal, but a few subjects showed a near normal upper branch. For the subjects with unilateral impairments, the equivalent rectangular bandwidth of the filter was always greater for the impaired ear than for the normal ear at each center frequency. For three subjects at 0.5 kHz and one subject at 1.0 kHz, the filter had too little selectivity for its shape to be determined.  相似文献   

18.
The hearing thresholds of two adult manatees were measured using a forced-choice two alternative paradigm and an up/down staircase psychometric method. This is the first behavioral audiogram measured for any Sirenian, as well as the first underwater infrasonic psychometric test with a marine mammal. Auditory thresholds were obtained from 0.4 to 46 kHz, and detection thresholds of possible vibrotactile origin were measured at 0.015-0.2 kHz. The U-shaped audiogram demonstrates an upper limit of functional hearing at 46 kHz with peak frequency sensitivity at 16 and 18 kHz (50 dB re: 1 microPa). The range of best hearing is 6-20 kHz (approximately 9 dB down from maximum sensitivity). Sensitivity falls 20 dB per octave below 0.8 kHz and approximately 40 dB per octave above 26 kHz. The audiogram demonstrates a wider range of hearing and greater sensitivity than was suggested from evoked potential and anatomical studies. High frequency sensitivity may be an adaptation to shallow water, where the propagation of low frequency sound is limited by physical boundary effects. Hearing abilities of manatees and other marine mammals may have also been shaped by ambient and thermal noise curves in the sea. Inadequate hearing sensitivity at low frequencies may be a contributing factor to the manatees' inability to effectively detect boat noise and avoid collisions with boats.  相似文献   

19.
Sound exposures and hearing thresholds of symphony orchestra musicians   总被引:1,自引:0,他引:1  
To assess the risk of noise-induced hearing loss among musicians in the Chicago Symphony Orchestra, personal dosimeters set to the 3-dB exchange rate were used to obtain 68 noise exposure measurements during rehearsals and concerts. The musicians' Leq values ranged from 79-99 dB A-weighted sound pressure level [dB(A)], with a mean of 89.9 dB(A). Based on 15 h of on-the-job exposure per week, the corresponding 8-h daily Leq (excluding off-the-job practice and playing) ranged from 75-95 dB(A) with a mean of 85.5 dB(A). Mean hearing threshold levels (HTLs) for 59 musicians were better than those for an unscreened nonindustral noise-exposed population (NINEP), and only slightly worse than the 0.50 fractile data for the ISO 7029 (1984) screened presbycusis population. However, 52.5% of individual musicians showed notched audiograms consistent with noise-induced hearing damage. Violinists and violists showed significantly poorer thresholds at 3-6 kHz in the left ear than in the right ear, consistent with the left ear's greater exposure from their instruments. After HTLs were corrected for age and sex, HTLs were found to be significantly better for both ears of musicians playing bass, cello, harp, or piano and for the right ears of violinists and violists than for their left ears or for both ears of other musicians. For 32 musicians for whom both HTLs and Leq were obtained, HTLs at 3-6 kHz were found to be correlated with the Leq measured.  相似文献   

20.
The responses of the malleus and the stapes to sinusoidal acoustic stimulation have been measured in the middle ears of anesthetized chinchillas using the M?ssbauer technique. With "intact" bullas (i.e., closed except for venting via capillary tubing), the vibrations of the tip of the malleus reach a maximal peak velocity of about 2 mm/s in responses to 100-dB SPL tones in the frequency range 500-6000 Hz; vibration velocity diminishes toward lower frequencies with a slope of about 6 dB/oct. Opening the bulla widely increases the responses to low-frequency stimuli by as much as 16 dB. At low frequencies, malleus response sensitivity with either open or intact bullas far exceeds all previous measurements in cats and matches or exceeds such measurements in guinea pigs. Whether measured in open or intact bullas, phase-versus-frequency curves closely approximate those predicted from the magnitude-versus-frequency curves by minimum phase theory. The stapes responses are similar to those of the malleus, except that stapes response magnitude is lower, on the average, by 7.5 dB at frequencies below 2 kHz and 10.7 dB at 2 kHz and above. Comparison of the responses of the middle ear with those of the basilar membrane at a site 3.5 mm from the stapes indicates that, at frequencies below 150 Hz, the basilar membrane displacement is proportional to stapes acceleration. At frequencies between 150 and 2000 Hz, basilar membrane displacement is proportional to stapes velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号