共查询到18条相似文献,搜索用时 60 毫秒
1.
2.
氢甲酰化串联反应是在氢甲酰化反应的基础上,与一个或多个不同类型的反应“一锅法”实现醛类化合物的后续定向转化,得到新的有机分子的合成方法。该反应的产物在日化工业、农业、医药中间体的生产中具有十分重要的用途。本文首先简述了近年来烯烃氢甲酰化串联反应制备高附加值化学品的重要性,随后重点介绍了几种常见的烯烃氢甲酰化串联反应:“异构化-氢甲酰化”串联反应、“氢甲酰化-缩醛化”串联反应、“氢甲酰化-氢化”串联反应和“氢甲酰化-(还原)胺化”串联反应等,以及其在设计新型(多功能)催化剂体系和高效合成目标产物方面的研究进展,最后总结了烯烃氢甲酰化串联反应存在的问题以及对未来发展趋势进行了展望。 相似文献
3.
温控相分离催化的高碳烯烃氢甲酰化反应研究 总被引:2,自引:0,他引:2
考察了非离子表面活性膦配体P[p-C6H4O(CH2CH2O)nH]3(PETPP,n=6~12,N=3n)在有机溶剂中的溶解度-温度关系,发现其在甲苯中具有临界溶解温度(CST)现象。基于PETPP在甲苯中低温分相、高温互溶的CST特性,提出了温控相分离催化的新概念。并将其应用于癸烯氢甲酰化反应,转化率及醛收率分别达到98.7%和96.0%,催化剂循环使用10次,活性基本保持不变。 相似文献
4.
5.
烯烃氢甲酰化反应研究进展 总被引:4,自引:1,他引:4
本文综述了烯烃氢甲酰化反应的催化剂从钴配合物到铑配合物和从均相催化体系到两相催化体系的发展过程。比较了三种催化剂和两个催化体系的特点、应用情况及研究工作进展. 相似文献
6.
7.
8.
9.
10.
1.前言 叔膦化合物作为配位体在许多均相催化反应,尤其在羰基合成(包括烯烃氢甲酰化、氢羧基化、氢酯基化等)的催化反应中起着重要作用。它们的配位可使许多过渡金属如钴、铑、钯、(钅了)等的羰基络合物催化剂的热稳定性明显增强,无须在高压CO气氛中使用,从而把高压催化反应变成中压催化反应,因之易于实现工业化。近来,双膦配体,如1,2-双(二苯基膦)乙烷(即dppe),对于一些羰化反应已显示出比单膦配体有更大的优越性,它使烯烃氢甲酰化的转化率和产率增加一至二百多倍。因此,对双膦配体进行系统深入 相似文献
11.
Wate-soluble polyether phosphites alkyl polyethylene glycol ophenylene phosphite(APGPPS)were alcoholysis of phosphorus chloride with plyoxyethylene alkyl ether.With appropriate HLB(hydrophile-lypophile balance),the phosphites possess clear cloud points below 100℃,Addition of some inorganic salts decreases cloud points of the phosphites.When the phosphiites have long polyether chain binding to short-chain alkyl group,their cloud points could be extrapolated from figure of dependece of cloud points on addition of inorganic salts.Utilizing octylpolyglycol-phenylene-phosphite(OPGPP)(APGPP,R:Octyl)/Rh complex formed in situ as catalyst,over 90% conversion of 1-decene was obtained ,avoiding the limitation of water insolubility of substrates.Preliminary results indicated that micellar catalysis and thermoregulated phase-transfer catalysis(TRPTC)coexist in the reaction system.Below cloud point,micellar catalysis induced by plyether phosphites may be existed.When temperature is increased to above cloud point of the phosphies,this reaction works mainly in TRPTC.The catalysts could be easily spearated by simple decantation,but followed by considerable loss in activity after three successive reaction runs.Preliminary results indicated hydrolysis of OPGPP happened during the reaction.which may explain for the bad loss in activity.The catalyst was reused up to seven times with-out clear decrease in activity when OPGPP/Rh ratio was increased to 50. 相似文献
12.
Domino Hydroformylation/Aldol Condensation/Hydrogenation Catalysis: Highly Selective Synthesis of Ketones from Olefins 下载免费PDF全文
Xianjie Fang Dr. Ralf Jackstell Prof. Dr. Armin Börner Prof. Dr. Matthias Beller 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(48):15692-15696
A general and highly chemo‐ and regioselective synthesis of ketones from olefins by domino hydroformylation/aldol condensation/hydrogenation reaction has been developed. A variety of olefins are efficiently converted into various ketones in good to excellent yields and regioselectivities in the presence of a specific rhodium phosphine/base–acid catalyst system. 相似文献
13.
Xiaofei Jia Dr. Zheng Wang Prof. Dr. Chungu Xia Prof. Dr. Kuiling Ding 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(48):15288-15295
A new class of bidentate phosphoramidite ligands, based on a spiroketal backbone, has been developed for the rhodium‐catalyzed hydroformylation reactions. A range of short‐ and long‐chain olefins, were found amenable to the protocol, affording high catalytic activity and excellent regioselectivity for the linear aldehydes. Under the optimized reaction conditions, a turnover number (TON) of up to 2.3×104 and linear to branched ratio (l/b) of up to 174.4 were obtained in the RhI‐catalyzed hydroformylation of terminal olefins. Remarkably, the catalysts were also found to be efficient in the isomerization–hydroformylation of some internal olefins, to regioselectively afford the linear aldehydes with TON values of up to 2.0×104 and l/b ratios in the range of 23.4–30.6. X‐ray crystallographic analysis revealed the cis coordination of the ligand in the precatalyst [Rh( 3 d )(acac)], whereas NMR and IR studies on the catalytically active hydride complex [HRh(CO)2( 3 d )] suggested an eq–eq coordination of the ligand in the species. 相似文献
14.
A novel TPPTS-Rh/SiO2 catalyst, prepared by directly modifying a heterogeneous highsurface-area Rh/SiO2 catalyst with water-soluble TPPTS ligands, could decrease the resistance of mass transfer in water/oil biphasic media for the hydroformylation of higher olefins. The catalytic performance for hydroformylation on this biphasic TPPTS-Rh/SiO2 catalyst system was higher than those of the traditional biphasic HRhCO(TPPTS)3 systems, owing to the chemical bonds between the highly dispersed Rh metal particles and the TPPTS ligands. The catalyst system is applicable for hydroformylation of higher olefins such as 1-dodecene. 相似文献
15.
A novel TPPTS-Rh/SiO2 catalyst, prepared by directly modifying a heterogeneous high-surface-area Rh/SiO2 catalyst with water-soluble TPPTS ligands, could decrease the resistance of masstransfer in water/oil biphasic media for the hydroformylation of higher olefins. The catalytic performancefor hydroformylation on this biphasic TPPTS-Rh/SiO2 catalyst system was higher than those of thetraditional biphasic HRhCO(TPPTS)3 systems, owing to the chemical bonds between the highly dispersedRh metal particles and the TPPTS ligands. The catalyst system is applicable for hydroformylation ofhigher olefins such as 1-dodecene. 相似文献
16.
Hejun Zhu Yunjie Ding Fu Yang Li Yan Jianmin Xiong Hongmei Yin Liwu LinNatural Gas Utilization Applied Catalysis Laboratory Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China 《天然气化学杂志》2004,(2)
A novel TPPTS-Rh/SiO2 catalyst, prepared by directly modifying a heterogeneous high-surface-area Rh/SiO2 catalyst with water-soluble TPPTS ligands, could decrease the resistance of mass transfer in water/oil biphasic media for the hydroformylation of higher olefins. The catalytic performance for hydroformylation on this biphasic TPPTS-Rh/SiO2 catalyst system was higher than those of the traditional biphasic HRhCO(TPPTS)3 systems, owing to the chemical bonds between the highly dispersed Rh metal particles and the TPPTS ligands. The catalyst system is applicable for hydroformylation of higher olefins such as 1-dodecene. 相似文献
17.
Reiko Jennerjahn Irene Piras Ralf Jackstell Dr. Robert Franke Dr. Klaus‐Diether Wiese Dr. Matthias Beller Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(26):6383-6388
A novel selective palladium catalyst system based on bidentate 2,2′‐heteroarylarylphosphines and p‐TsOH has been developed for hydroformylation reactions (see scheme). By applying optimal conditions good to excellent regioselectivity is obtained for the hydroformylation of aliphatic and aromatic olefins. It is shown that a low acid concentration is crucial for obtaining high degrees of the linear isomer.