首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
《Analytical letters》2012,45(9):2009-2024
Abstract

Adding additional components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the fluid solvating properties. Polar samples which are difficult to be analyzed with pure supercritical CO2 because of their high polarity can be separated by adding polar modifiers to supercritical CO2. In this paper, a new mixing device using a teflon high capacity filter for adding polar modifiers to carbon dioxide mobile phase is introduced. This new mixing device could keep the amount of modifier in the mobile phase constant for a much longer time than a saturator column. The amount of water or methanol dissolved in supercritical CO2 was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI).  相似文献   

2.
D. Pyo  D. Ju 《Chromatographia》1994,38(1-2):79-82
Summary Adding various components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the solvating properties. Polar samples which are difficult to analyze with pure supercritical CO2 because of their high polarity can be separated by addidng polar modifiers. In this paper, a new mixing method using an HPLC filter for adding polar modifier to CO2 is described. Although several filters were tried, only one could keep the amount of modifier in the mobile phase constant for a long time. The amount of water or methanol dissolved in supercritical CO2 was measured by an amperometric microsensor made of a thin film of perfluorosulfonate ionomer (PFSI).  相似文献   

3.
Supercritical fluid extraction was coupled directly with high performance liquid chromatograph. The system was evaluated for direct injection of supercritical CO2 and modified supercritical CO2 at high pressure and temperature onto a HPLC system with varying mobile phase compositions and flow rates. Injection of 9 μL supercritical CO2 onto the HPLC using methanol/water mobile phases from 100% methanol to 80% with a flow of 1.0 mL/min did not adversely affect the baseline of UV detector. However at higher percentages of water, CO2 solubility in the mobile phase decreased and caused baseline interferences on the UV detector. At higher HPLC mobile phase flow rates, supercritical CO2 was injected to higher percentages of water without any effect on the UV baseline. Also, increasing the extraction pressure or modifier concentration did not change the results. Separations of polynuclear aromatic hydrocarbons and linear alkenebenzene sulfonate test mixtures were obtained using on-line SFE/HPLC interfaced system.  相似文献   

4.
The application of enhanced fluidity liquid (EFL) mobile phases to improving isocratic chromatographic separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC) mode is described. The EFL mobile phase was created by adding carbon dioxide to a methanol/buffer solution. Previous work has shown that EFL mobile phases typically increase the efficiency and the speed of the separation. Herein, an increase in resolution with the addition of carbon dioxide is also observed. This increase in resolution was achieved through increased selectivity and retention with minimal change in separation efficiency. The addition of CO2 to the mobile phase effectively decreases its polarity, thereby promoting retention in HILIC. Conventional organic solvents of similar nonpolar nature cannot be used to achieve similar results because they are not miscible with methanol and water. The separation of nucleosides with methanol/aqueous buffer/CO2 mobile phases was also compared to that using acetonitrile/buffer mobile phases. A marked decrease in the necessary separation time was noted for methanol/aqueous buffer/CO2 mobile phases compared to acetonitrile/buffer mobile phases. There was also an unusual reversal in the elution order of uridine and adenosine when CO2 was included in the mobile phase.  相似文献   

5.
A reproducible and fast method has been developed for the assay of cyclandelate in bulk and drug forms using packed column supercritical fluid chromatography using dicyclohexyl phthalate (DCHP) as internal standard. The drug and the internal standard were resolved by elution with supercritical fluid carbon dioxide doped with 14.29% (v/v) methanol on an RP-C18 column and detected spectrophotometrically at 228 nm. Chromatographic figures of merit using C8, C18, cyano and phenyl columns have been assessed. Parallel experiments have been performed by HPLC and the data have been compared. Supercritical fluid extraction using CO2 modified with a small amount of methanol was found to give quantitative analytical recoveries of cyclandelate from a dosage form. SFC has been shown to be a viable, faster alternative technique to HPLC generating less disposable waste.  相似文献   

6.
Summary The retention behavior of a set of polycyclic aromatic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO2 and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO2.  相似文献   

7.
A reproducible and fast method has been developed for the assay of cyclandelate in bulk and drug forms using packed column supercritical fluid chromatography using dicyclohexyl phthalate (DCHP) as internal standard. The drug and the internal standard were resolved by elution with supercritical fluid carbon dioxide doped with 14.29% (v/v) methanol on an RP-C18 column and detected spectrophotometrically at 228 nm. Chromatographic figures of merit using C8, C18, cyano and phenyl columns have been assessed. Parallel experiments have been performed by HPLC and the data have been compared. Supercritical fluid extraction using CO2 modified with a small amount of methanol was found to give quantitative analytical recoveries of cyclandelate from a dosage form. SFC has been shown to be a viable, faster alternative technique to HPLC generating less disposable waste. Received: 20 June 1997 / Revised: 20 October 1997 / Accepted: 26 October 1997  相似文献   

8.
Supercritical fluid extraction (SFE) of aqueous solutions is often limited by poor mass transport. The performance of a new gas-liquid entraining device was investigated to improve mass transport and thereby increase extraction efficiency. As a test system, iron(III) was extracted from water with a β-diketone chelating agent (HL) and supercritical fluid carbon dioxide. Metal β-diketonate complexes with sufficient solubility in supercritical fluid CO2 are often poorly extracted from aqueous solutions due to limited mass transport between the water-soluble metal ion and the CO2-soluble chelating agent. The new entraining device maximizes contact between the ligand-rich CO2 phase and the metal ion-rich aqueous phase. Iron(III) was extracted from water with the chelating agent 2,2,7-trimethyl-3,5-octanedione (H(tod)) and supercritical fluid CO2 at 60 °C and 20.8 MPa. With entrainment, 79% of the iron was removed from the aqueous phase. This represents a three-fold increase in iron extraction efficiency over that of a static system.  相似文献   

9.
Summary The separation of amino compounds by supercritical fluid chromatography (SFC) is a difficult problem to solve, owing to the apolar nature of CO2. The derivatization of amino functions with the 9-fluorenylmethyl chloroformate (FMOC-Cl) allows to obtain apolar UV-absorbing compounds easily eluted with a supercritical mobile phase. Optimization of derivatization parameters allows us to analyze quantitatively amphetamines and catecholamines. These compounds can be separated in less than 5 min with a small addition of methanol as polar modifier. The total procedure takes no more than 15 min and can be automatized to gain time. As presented in this study, this method can be employed to physiological fluids as urine.  相似文献   

10.
The development of an on-line SFC-FTIR method with supercritical carbon dioxide as mobile phase requires information about the nature of the FTIR spectrum of a solute dissolved in supercritical or liquid CO2. The wavenumber of maximum absorbance of the carbonyl stretching vibration was quantitatively studied versus temperature and CO2 density. FTIR spectra recorded in supercritical or liquid CO2 have been compared to their vapor-phase and condensed-phase spectra for various solutes.  相似文献   

11.
Summary An ion mobility detector (IMD) was evaluated for open tubular column supercritical fluid chromatography (SFC) when organic solvent-modified supercritical CO2 was used as mobile phase. It was found that the SFC/IMD interface design in which the SFC capillaray restrictor was directly inserted into the ionization region of the IMD was not acceptable because of low sensitivity that resulted from the effect of the modifier on detector temperature and mechanism of detection. A new interface utilizing a heated nebulizer gas to provide heat to the restrictor and to minimize the formation of ion clusters, and a bent nozzle for enhancing the ionization efficiency of the solute in the IMD ion source are described. Using 5% acetonitrile in CO2, the minimum detectable quantity (S/N=3) for pyrene was improved from 25.2 ng to 2.1 ng with the new detector design. This compares to a minimum detectable quantity of 0.1 ng when using neat CO2 as mobile phase. The use of molecular connectivity calculations to predict the drift times of selected analytes is also successfully demonstrated.  相似文献   

12.
Summary Water was added to CO2 by saturation to increase the solvation power of the mobile phase in supercritical fluid chromatography. The saturation was performed at a temperature above the boiling point of water (100°C) to increase the amount of water which could be loaded homogeneously into the CO2 (2.5–3.0 mol% water as compared to about 0.25 mol% water at 25°C). A linear composition of water was produced by altering the density of the CO2 during saturation. Modifications to the injector and CO2 transfer lines prevented phase separation as a result of the instrumentation used in capillary supercritical fluid chromatography (SFC). After fitting vapor-liquid equilibria data to pressure, density, and temperature conditions, approximately 2.5–3.0 mol% of water was introduced in a linear gradient at 110°C. The effect of water on SFC performance was evaluated with standard steroid compounds. This paper provides further evidence for the need to examine vapor-liquid equilibria data prior to SFC.  相似文献   

13.
Summary Packed column supercritical fluid chromatography, like HPLC, utilizes a sample loop to introduce materials onto the column for analysis. Unlike HPLC the mobile phase in SFC cannot be used to dissolve the sample. In practice, this causes a solvent peak, which can create a problem in the chromatographic interpretation. This paper describes one approach to solving this problem. A valving scheme is used to extract materials with the supercritical CO2 mobile phase and introduce them onto the column with no external handling. The viability of this method is demonstrated and separations of the CO2 extracts for several materials are shown on various columns. Comparisons are made for coal and coffee extracts using this on-line method and conventional off-line CH2Cl2 extracts. Advantages of the on-line procedure as they apply to chromatography and high information detectors are also discussed.  相似文献   

14.
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE ® C18‐amide) was evaluated for use in supercritical fluid chromatography. The amide‐based column was compared with columns packed with bare silica, C18 silica, and a terminal‐amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five‐component test mixture, consisting of a group of drug‐like molecules was separated isocratically. The results show that the C18‐amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18‐amide column was able to provide baseline resolution of all the drug‐like probe compounds in a text mixture, while the other columns tested did not.  相似文献   

15.
《Analytical letters》2012,45(17):3208-3218
Abstract

A method for the detection of microcystins (microcystin LR, RR, and YR) in cyanobacteria by supercritical fluid extraction (SFE) and liquid chromatography‐mass spectrometry (LC/MS) has been developed. Supercritical fluids for the analytical extraction of nonvolatile, higher molecular weight compound, and microcystins from cyanobacteria were investigated. The microcystins included in this study are sparsely soluble in neat supercritical fluid CO2. However, the microcystins was successfully extracted with a ternary mixture (90% CO2, 9.5% methanol, 0.5% water) at 40°C and 250 atm. The polar carbon dioxide‐aqueous methanol fluid system gave high extraction efficiency for the extraction of the polar microcystins from cyanobacteria. The microcystins were determined by liquid chromatography‐tandem mass spectrometry (LC/MS/MS).  相似文献   

16.
A cellulose tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co‐solvents (methanol and propan‐2‐ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO2/methanol/isopropylamine 80:20:0.1 v/v/v or CO2/propan‐2‐ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β‐blockers. A high‐performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan‐2‐ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high‐performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high‐performance liquid chromatography were also found.  相似文献   

17.
Jiménez  J. J.  Atienza  J.  Bernal  J. L.  Toribio  L. 《Chromatographia》1994,38(5-6):395-399
Summary An SFE-HPLC method for the determination of carbendazime in lettuce leaves is described. The method involves a prior lyophilization of the sample and subsequent extraction with supercritical carbon dioxide containing methanol. The extraction conditions are as follows: amount of lyophilized sample, 1 g; CO2 density, 0.75 g/ml; temperature, 50 °C; flow-rate, 1.8 ml/min; dynamic extraction time, 25 min. Carbendazime is determined with an octadecylsilane column, an acetonitrile/water 3070 mobile phase and fluorescence detection at 285/317 nm. Carbendazime recoveries from spiked samples were all close to 100%. A comparison with the results from a conventional method for the determination of carbendazime reveals the new method to be more rapid, simple and reproducible for samples with low concentrations of analyte.  相似文献   

18.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   

19.
The plasma emission detector (PED) has been shown to be an element specific detector for supercritical fluid chromatography (SFC). The commonly used eluents (CO2 and N2O) tend to disturb the He plasma; two different discharge tubes were tested in an attempt to overcome this problem. Promising results were obtained with a concentric dual flow torch design for the element specific detection of Cl, H, and C containing analytes using N2O as SFC mobile phase.  相似文献   

20.
《Analytical letters》2012,45(18):2860-2869
Supercritical fluid chromatography employing chiral stationary phases is a popular separation technique to perform enantioselective separations. The main advantages of supercritical fluid chromatography are low analysis time, low consumption of organic modifiers, and therefore lower costs and higher environmental friendliness. A novel method for the separation of chlorthalidone enantiomers, widely used diuretic drug, is reported that clearly demonstrates the advantages of supercritical fluid chromatography. The effects of the amount and type of organic modifiers, temperature, and back pressure on enantioselectivity and resolution of the enantiomers were evaluated. The baseline separation was achieved in less than 2.5 min in the optimized system composed of Chiralpak AD column, mobile phase CO2/MeOH 50/50 (v/v), temperature 40°C, a flow rate of 4.0 mL/min, and 120 bar back pressure. Moreover, enantiomers of chlorthalidone were determined in two commercially available pharmaceuticals. The proposed method may be easily transferred to a semi-preparative scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号