首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two σ subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E2g distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gr neisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures. Received 3 September 2002 / Received in final form 16 December 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: joseph.betouras@ua.ac.be RID="b" ID="b"On leave from N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninskii prospekt, 117915, Moscow, Russia  相似文献   

2.
We compute the number level variance Σ 2 and the level compressibility χ from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With N, W, and L denoting, respectively, linear system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N, W) and the integrated Σ 2 obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2. We compute the critical exponent as ν≈ 1.45±0.12 and the critical disorder as W c≈ 8.59±0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈ 0.28±0.06 at the metal-insulator transition in very close agreement with previous results. Received 1st November 2001 and Received in final form 8 March 2002 Published online 6 June 2002  相似文献   

3.
High-spin properties of the triaxial strongly deformed potential well in 163Lu at excitation energies above resolvable bands have been investigated. Gated E γ-E γ spectra display clear ridges with moments of inertia corresponding to those observed for the discrete strongly deformed bands. A fluctuation analysis of the ridges yields a number of two-step paths of ≈ 40 and ≈ 20, when gating on triaxial strongly or normally deformed bands, respectively. These results show that a potential well at large deformation coexists with the normally deformed well, and indicate a mixing between states in the two wells at higher excitation energy. Received: 4 January 2002 / Accepted: 6 May 2002  相似文献   

4.
We show that the electronic states in a one-dimensional (1D) Anderson model of diagonal disorder with long-range correlation proposed by de Moura and Lyra exhibit localization-delocalization phase transition in varying the energy of electrons. Using transfer matrix method, we calculate the average resistivity and investigate how it changes with the size of the system N. For given value of α (> 2) we find critical energies Ec1 and Ec2 such that the resistivity decreases with N as a power law ∝ N - γ for electron energies within the range of [E c1, E c2], and exponentially grows with N outside this range. Such behaviors persist in approaching the transition points and the exponent γ is in the range from 0.92 to 0.96. The origin of the delocalization in this 1D model is discussed. Received 18 December 2001 / Received in final form 2 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: sjxiong@nju.edu.cn  相似文献   

5.
Superconducting SrTiO 3 - δ was obtained by annealing single crystalline SrTiO3 samples in ultra high vacuum. An analysis of the V ( I ) characteristics revealed very small critical currents I c which can be traced back to an unavoidable doping inhomogeneity. R ( T ) curves were measured for a range of magnetic fields B at I I c , thereby probing only the sample regions with the highest doping level. The resulting curves B c2 ( T ) show upward curvature, both at small and strong doping. These results are discussed in the context of bipolaronic and conventional superconductivity with Fermi surface anisotropy. We conclude that the special superconducting properties of SrTiO 3 - δ can be related to its Fermi surface and compare this finding with properties of the recently discovered superconductor MgB2. Received 4 December 2002 / Received in final form 10 March 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: jourdan@uni-mainz.de  相似文献   

6.
In 1969, Andreev and Lifshitz have conjectured the existence of a supersolid phase taking place at zero temperature between the quantum liquid and the solid. In this and a succeeding paper, we re-visit this issue for a few polarized electrons (spinless fermions) interacting via a U/r Coulomb repulsion on a two dimensional L×L square lattice with periodic boundary conditions and nearest neighbor hopping t. This paper is restricted to the magic number of particles N = 4 for which a square Wigner molecule is formed when U increases and to the size L = 6 suitable for exact numerical diagonalizations. When the Coulomb energy to kinetic energy ratio r s = UL/(2t ) reaches a value r s F ≈ 10, there is a level crossing between ground states of different momenta. Above r s F, the mesoscopic crystallization proceeds through an intermediate regime ( r s F < r s < r s W ≈ 28) where unpaired fermions with a reduced Fermi energy co-exist with a strongly paired, nearly solid assembly. We suggest that this is the mesoscopic trace of the supersolid proposed by Andreev and Lifshitz. When a random substrate is included, the level crossing at r s F is avoided and gives rise to a lower threshold r s F(W) < r s F where two usual approximations break down: the Wigner surmise for the distribution of the first energy excitation and the Hartree-Fock approximation for the ground state. Received 21 June 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: jpichard@cea.fr  相似文献   

7.
We investigate a collective excitation (Leggett's mode) corresponding to small fluctuations of the relative phase of two condensates in two-band superconductor using the effective “phase only” action. We consider the possibility of observing Leggett's mode in MgB2 superconductor and conclude that for the known at present values of the two-band model parameters for MgB2 Leggett's mode arises above the two-particle threshold. Received 10 May 2002 Published online 19 November 2002  相似文献   

8.
The anisotropy of MgB2 is still under debate: its value, strongly dependent on the kind of sample and on the measuring method, ranges between 1.2 and 13. In this work we present our results on MgB2 c-oriented superconducting thin film. To evaluate the anisotropy, we followed two different approaches. Firstly, magnetoresistivity was measured as a function of temperature at selected magnetic fields applied both parallel and perpendicular to the c-axis; secondly, we measured magnetoresistivity at selected temperatures and magnetic fields, varying the angle θ between the magnetic field and the c-axis. The anisotropy estimated from the ratio between the upper critical fields parallel and perpendicular to the c-axis and the one obtained in the framework of the scaling approach within the anisotropic Ginzburg-Landau theory are different but show a similar trend in the temperature dependence. Some differences in the upper critical field and in its anisotropy of our film with respect to single crystals are emphasized: some of these aspects can be accounted for by an analysis of upper critical fields within a two-band model in presence of disorder and/or crystallographic strain. Received 12 July 2002 / Received in final form 17 September 2002 Published online 29 November 2002  相似文献   

9.
In this paper, through an exhaustive analysis within the Migdal-Eliashberg theory, we show the incompatibility of experimental data of Rb3C60 with the basic assumptions of the standard theory of superconductivity. For different models of the electron-phonon spectral function α 2 F (Ω) we solve numerically the Eliashberg equations to find which values of the electron-phonon coupling λ, of the logarithmic phonon frequency and of the Coulomb pseudopotential μ * reproduce the experimental data of Rb3C60. We find that the solutions are essentially independent of the particular shape of α 2 F (Ω) and that, to explain the experimental data of Rb3C60, one has to resort to extremely large couplings: λ = 3.0±0.8. This results differs from the usual partial analyses reported up to now and we claim that this value exceeds the maximum allowed λ compatible with the crystal lattice stability. Moreover, we show quantitatively that the obtained values of λ and strongly violate Migdal's theorem and consequently are incompatible with the Migdal-Eliashberg theory. One has therefore to consider the generalization of the theory of superconductivity in the nonadiabatic regime to account for the experimental properties of fullerides. Received 30 March 2001  相似文献   

10.
The fusion evaporation reaction 122Sn(14N, 4n)132La was used to populate the high-spin states of 132La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2- and the isomeric state 6-. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the πh 11/2 ⊗ νh 11/2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. Received: 12 August 2002 / Accepted: 18 March 2003 / Published online: 7 May 2003  相似文献   

11.
The effective linear and nonlinear optical properties of metal/dielectric composite media, in which ellipsoidal metal inclusions are distributed in shape, are investigated. The shape distribution function P(L x, L y) is assumed to be 2Δ-2θ(L x - 1/3 + Δ/3)θ(L y - 1/3 + Δ/3)θ(2/3 + Δ/3 - L x - L y), where θ( . . . ) is the Heaviside function, Δ is the shape variance and Li are the depolarization factors of the ellipsoidal inclusions along i-symmetric axes (i = x, y). Within the spectral representation, we adopt Maxwell-Garnett type approximation to study the effect of shape variance Δ on the effective nonlinear optical properties. Numerical results show that both the effective linear optical absorption α ∼ ωIm() and the modulus of the effective third-order optical nonlinearity enhancement |χ(3) e|/χ(3) 1 exhibit the nonmonotonic behavior with Δ. Moreover, with increasing Δ, the optical absorption and the nonlinearity enhancement bands become broad, accompanied with the decrease of their peaks. The adjustment of Δ from 0 to 1 allows us to examine the crossover behavior from no separation to large separation between optical absorption and nonlinearity enhancement peaks. As Δ → 0, i.e., the ellipsoidal shape deviates slightly from the spherical one, the dependence of |χ(3) e|/χ(3) 1 on Δ becomes strong first and then weak with increasing the imaginary part of inclusions' dielectric constant. In the dilute limit, the exact formula for the effective optical nonlinearity is derived, and the present approximation characterizes the exact results better than old mean field one does. Received 10 December 2002 Published online 4 June 2003 RID="a" ID="a"e-mail: lgaophys@pub.sz.jsinfo.net  相似文献   

12.
We report results of a theoretical and experimental study of the ground state nonlinear Hanle effect under strong laser excitation. It is shown that besides the well-known zero-magnetic field suppression of absorption on F g = FF e = F - 1 transitions caused by population trapping, an optical pumping induced enhanced absorption occurs on F g = FF e = F + 1 transitions for small B-fields. The latter effect becomes more pronounced for high F values. The experiment with atomic vapor of Cs (D2 line, F g = 4) confirms an increase of the spectrally unresolved fluorescence yield at zero magnetic field and 600 mW/cm2 laser intensity by 9% or 42%, when excitation occurs with linearly or circularly polarized light, respectively. The results of the experiment agree with numerical simulation studies using equations of motion for a density matrix. Received 24 November 2001 / Received in final form 25 March 2002 Published online 24 September 2002  相似文献   

13.
High resolution photoemission measurements performed at low temperatures on a single-grained sample of the AlPdMn icosahedral phase show that the density of states N(E) strongly depends on the nature of the surface. For an ordered quasicrystalline surface, prepared by Ar etching and ultra high vacuum annealing, a dip feature is observed in N(E) near the Fermi level, which energy dependence can be analyzed with a simple square-root power law. By contrast, N(E) varies only little with energy both for a disordered surface and a crystalline surface of the same sample. A sharp Fermi edge is then clearly observed. This shows that the metallic character of the surface of a quasicrystal is strongly reduced when the surface presents a quasicrystalline ordering. Received 19 February 2000 and Received in final form 6 November 2000  相似文献   

14.
The dielectric permittivity ε - i of SrTi 18O 3 (STO18) is studied under a dc electric field E as a function of the temperature, T. In ε vs. T, a double-peak is found when 0 < E < 30 KV/m. While the peak at high-T is attributed to the smeared ferroelectric phase transition, the low-T one is induced by domain wall motion. The transverse Ising model including an external homogeneous and quenched random-fields is successfully used to describe both the smeared phase transition and the domain wall response in the low-T domain state. The calculations are in good agreement with the experimental results. Received 4 January 2002 / Received in final form 25 March 2002 Published online 19 July 2002  相似文献   

15.
16.
17.
We present the ultrafast multistate nuclear dynamics involving adiabatic and nonadiabatic excited states of non-stoichiometric halide deficient clusters (NanFn-1) characterized by strong ionic bonding and one-excess electron for which the “frozen ionic bonds” approximation has been justified allowing to consider the optical response of the single excess electron in the effective field of the other electrons. We combined the Wigner-Moyal representation of the vibronic density matrix with the ab initio multi state molecular dynamics in the ground and excited electronic states including the nonadiabatic couplings calculated “on the fly” at low computational demand. This method allows the simulation of femtosecond pump-probe and pump-dump signals based on an analytical formulation, which utilizes temperature dependent ground state initial conditions, an ensemble of trajectories carried out on the electronic excited state as well as on the ground state after the passage through the conical intersection in the case of nonadiabatic dynamics and for probing either in the cationic state or in the ground state. The choice of the systems we presented has been made in order to determine the timescales of the fast geometric relaxation leaving the bonding frame intact as during the dynamics in the first excited state of Na4F3, and of the bond breaking processes leading to conical intersection between the first excited state and the ground state as in Na3F2. The former is the smallest finite system prototype for an surface F-center of bulk color centers. The latter allows to study the photo isomerization in full complexity taking into account all degrees of freedom. In the case of Na4F3 after the fast geometric relaxation in the excited state leading to deformed cuboidal structure without breaking of bonds, different types of internal vibrational redistribution (IVR) processes have been identified in pump-dump signals by tuning the dump laser. In contrast, from the analysis of the pump-probe signals of Na3F2 cluster, the timescales for the metallic and the ionic bond breaking, as well as for the passage through conical intersection have been determined. Finally the conditions under which these processes can be experimentally observed have been identified. Received 22 December 2000  相似文献   

18.
19.
We have studied the temperature dependent resistivity ρ( T ) of La2-xSrxCuO4 epitaxial thin films in the doping range 0.045 ⩽ x ⩽ 0.25 in pulsed magnetic fields up to 50 T. The zero-field resistivity ρ( T ) of these samples in the pseudogap regime, can be scaled onto one single universal curve in a broad temperature range by using a linear transformation of both temperature and resistivity. The high field data ρ( T ) reveal a metal to insulator transition (MIT) at low temperatures, well into the overdoped regime. For samples having k F l < 1, with kF the Fermi wave vector and l the mean free path, this low temperature insulating behavior of the resistivity is described by the variable range hopping conductivity (VRH). For samples with k F l > 1, the divergence follows ρ( T ) ∼ ln (1/ T ) or a power law, depending upon the Sr-content. We further found that the residual conductivity at the minimum in ρ( T ), appearing due to the MIT, follows a linear behavior with respect to the Sr-content. It is argued that the unusual MIT in compounds with k F l > 1, is most probably associated with the pseudogap and the behavior of charge stripes at low temperatures. Received 4 January 2002 / Received in final form 7 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: liesbet.weckhuysen@fys.kuleuven.ac.be  相似文献   

20.
We consider a low-density assembly of spherical colloids, such that each is clothed by L end-grafted chemically incompatible polymer chains either of types A or B. These are assumed to be dissolved in a good common solvent. We assume that colloids are of small size to be considered as star-polymers. Two adjacent star-polymers A and B interact through a force F originating from both excluded-volume effects and chemical mismatch between unlike monomers. Using a method developed by Witten and Pincus (Macromolecules 19, 2509 (1986)) in the context of star-polymers of the same chemical nature, we determine exactly the force F as a function of the center-to-center distance h. We find that this force is the sum of two contributions F e and F s. The former, that results from the excluded volume, decays as F eA L h -1, with the L -dependent universal amplitude A LL 3/2. While the second, which comes from the chemical mismatch, decays more slowly as F s∼χB L h -1 - τ, where τ is a critical exponent whose value is found to be τ 0.40, and χ is the standard Flory interaction parameter. We find that the corresponding L-dependent universal amplitude is B LL 3 + τ /2. Theses forces are comparable near the cores of two adjacent star-polymers, i.e. for hh ca (a is the monomer size). Finally, for two star-polymers of the same chemical nature (A or B), the force F that simply results from excluded-volume effects coincides exactly with F e, and then the known result is recovered. Received 2 October 2000 and Received in final form 24 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号