首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
用沉降聚合法制备了聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)微凝胶, 并用NMR, DLS分析测定了微凝胶结构及凝胶颗粒在不同离子强度下粒径和表面电势的变化. 25 ℃时在pH=7的溶液中Zeta电位为-18 mV, 随离子强度增加, 逐渐减小. 当NaCl浓度达0.2 mol/L时基本不变, 表明微凝胶表面电荷受到屏蔽, 浓度继续增加主要使凝胶颗粒收缩. 加热引起微凝胶收缩, 颗粒表面电荷密度增大, Zeta电位增大. 在0.2 mol/L NaCl溶液中, 41 ℃时微凝胶的Zeta电位可达-12.4 mV, 使微凝胶稳定. 较高离子强度时, Zeta电位随温度升高发生突变, 微凝胶表面几乎为中性, 其突变温度与临界絮凝温度(CFT)相当. CFT随离子强度增加向低温迁移, 微凝胶聚集速率在高温时比低温时快.  相似文献   

2.
温度、pH敏感性核壳结构微凝胶的制备及性质   总被引:8,自引:0,他引:8  
以无皂乳液分步聚合的方法, 将N-异丙基丙烯酰胺(NIPAM)与N,N-亚甲基双丙烯酰胺(MBA)交联反应3 h, 制得种子乳液, 再向种子乳液中加入甲基丙烯酸(MAA)功能性单体继续反应2 h, 制备了具有温度、pH敏感性的核壳结构微凝胶. 通过透射电子显微镜(TEM)、红外光谱(IR)等表征了微凝胶外貌形态及结构组成, 动态光散射(DLS)测定了微凝胶粒径响应热、pH的变化及微凝胶Zeta电位的变化. 结果表明凝胶形貌为异型核壳结构; Zeta电位与微凝胶粒径随温度、pH变化相关.  相似文献   

3.
新型pH及温度敏感性水凝胶   总被引:4,自引:0,他引:4  
水凝胶是由三维交联网络结构的高聚物和介质共同组成的多元体系 ,因其独特的刺激响应行为 ,已在药物释放体系、物料分离、化学机械、人工肌肉等领域显示了良好的应用前景[1,2 ] .在人体体液这种复杂的环境中 ,水凝胶同时受到pH和温度等多重刺激作用 ,因此 ,研究多重响应性水凝胶具有重要意义 .聚氨酯作为一种广泛应用的高分子材料具有结构易调节、力学性能优异及生物相容性好等特点 ,在生物医学领域可将其用作假肢部件、外科用置入管、隐形眼睛等 .已有文献报道了pH敏感性聚氨酯水凝胶[3~ 5] ,但对多重响应性聚氨酯基水凝胶的报道还很…  相似文献   

4.
以不同浓度的β-环糊精水溶液为反应介质制备了一系列快速响应的温度敏感性聚(N-异丙基丙烯酰胺)水凝胶。利用SEM观察其表面形态,并测定了不同温度下达到平衡时水凝胶的溶胀比,研究了水凝胶的去溶胀动力学。结果表明,与传统水凝胶相比,该水凝胶的溶胀性能略有提高,并且对温度的变化具有非常快的响应速率。以0·25(wt)%的β-环糊精水溶液中制备的水凝胶为例,该水凝胶仅1min内就失去约94%的水,而传统水凝胶在15min内仅失去66%左右的水。  相似文献   

5.
以N-异丙基丙烯酰胺(NIPAM)、甲基丙烯酸(MAA)为单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,制备了温敏性聚(N-异丙基丙烯酰胺)(PNIPAM)和具有温度、pH敏感性的聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)(PNIPAM-MAA)微凝胶。通过测定不同温度和pH条件下微凝胶浊度变化,表征微凝胶的温度及pH敏感性,描述了NaCl浓度和pH对微凝胶体积相转变温度的影响。同时,测定了微凝胶的临界聚沉浓度及临界絮凝温度,表征了微凝胶的稳定性,讨论了影响微凝胶的稳定性因素。  相似文献   

6.
以丙烯酰胺(AM)为单体,壳聚糖(CS)与氧化石墨烯(GO)为功能组分,N,?N'-亚甲基双丙烯酰胺(MBA)为交联剂,通过自由基聚合法制备PAM/CS/GO水凝胶.采用傅里叶变换红外(FT-IR)光谱、X射线衍射(XRD)仪、扫描电镜(SEM)和万能试验机对水凝胶的结构与性能进行测试与表征.利用石英晶体微天平(QCM...  相似文献   

7.
采用γ辐射技术引发壳聚糖与N异丙基丙烯酰胺进行接枝共聚,制备了温度及pH敏感水凝胶.研究了单体浓度、辐射剂量等对接枝率和接枝效率的影响,并用13CCPMASNMR和TG表征了接枝物的结构.研究结果表明,用γ射线引发壳聚糖接枝异丙基丙烯酰胺具有较高的接枝率和接枝效率,接枝的聚合物具有明显的温度及pH敏感的特点.  相似文献   

8.
通过自由基聚合的方法,将二硫化钼(MoS2)引入聚丙烯酰胺/壳聚糖(PAM/CS)水凝胶体系,制得互穿网络结构的PAM/CS/MoS2复合高分子水凝胶。利用傅里叶变换红外光谱、拉曼光谱、扫描电子显微镜、激光扫描共聚焦显微镜对水凝胶的组分和形貌进行分析。利用万能试验机和接触角测量仪对水凝胶的力学性能和亲水性能进行测试,最后用石英晶体微天平(QCM)探究了该复合水凝胶薄膜在湿度传感领域的应用。结果表明,PAM/CS/MoS2-0.4(MoS2在体系中的质量为0.4 mg)复合水凝胶具有最大的压缩应力(584.6 kPa)与最大的压缩应变(83.8%);MoS2的引入,增强了复合水凝胶的亲水性;随着环境相对湿度从11%增加到95%,基于PAM/CS/MoS2复合水凝胶的QCM湿度传感器的响应频率最大可达2 642 Hz,相对湿度变化1%的灵敏度为31.45 Hz,有望应用于湿度传感领域。  相似文献   

9.
核壳结构葡萄糖敏感微凝胶的制备   总被引:1,自引:0,他引:1  
用先合成聚N-异丙基丙烯酰胺(PNIPAM)微凝胶核再包一层N-异丙基丙烯酰胺/丙烯酸共聚物(P(NIPAM-co-AA))壳的办法合成了一系列核壳结构微凝胶.微凝胶壳层厚度随投入的壳储备溶液的增加而增加.研究了pH=3.5时核壳微凝胶的温敏体积相转变行为.由于PNIPAM核和P(NIPAM-co-AA)壳的相转变温度很接近,因此只观察到一个相转变.在EDC催化下使3-氨基苯硼酸与壳层中的羧基反应,将苯硼酸基(PBA)引入微凝胶,得到核为PNIPAM、壳为P(NIPAM-co-AMPBA)的核壳结构微凝胶.改性后的微凝胶表现出3个体积相转变过程.其中第一个对应于P(NIPAM-co-AMPBA)壳层的体积相转变.第二和第三个则是PNIPAM核的相转变过程.由于在沉淀聚合时交联剂BIS反应性更大,PNIPAM核结构不均一,形成BIS含量高的"核"和BIS含量低的"壳".BIS含量低的"壳"被一层疏水的P(NIPAM-co-AMPBA)壳包裹,拉大了其与"核"的相转变温度的差别,因此随着温度升高表现出两个相转变过程.PBA改性的微凝胶同样表现出葡萄糖敏感性,但在葡萄糖存在下溶胀度的改变较小.  相似文献   

10.
以N-异丙基丙烯酰胺(NIPAM)为单体、N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂、安息香二甲醚(DMPA)为引发剂,利用紫外光引发聚合制备了一系列温度敏感性聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶,并对其性能进行了测定.结果表明,PNIPAM水凝胶的平衡膨胀比随着交联程度的变化而改变.当交联程度适当时,水凝胶可具有最大的溶胀比.在此研究基础上,利用浸渍提拉法在长周期光纤光栅(LPFG)包层外制备了PNIPAM水凝胶薄膜包覆层.研究了得到的LPFG传感器对温度和湿度的响应性,该类型传感器表现出对温度的灵敏响应性.  相似文献   

11.
Monodisperse cationic thermosensitive latex microgels have been prepared by radical-initiated precipitation polymerization of N-isopropylacrylamide, methylene bisacrylamide using 2,2′-azobis(2-amidinopropane hydrochloride) as an initiator and dimethylaminoethyl methacrylate (DMAEMA) as a cationic monomer. The final microgel latexes were characterized with respect to water-soluble polymer formation, particle size and size distribution. Adding cationic monomer (DMAEMA) was found to drastically affect the particle size, but not the size distribution as observed both by transmission electron microscopy and quasielastic light scattering (QELS). However, too high a DMAEMA concentration in the feed composition led to enhanced formation of water-soluble polymer. The volume phase-transition temperature of cleaned microgels examined by QELS (particle size versus temperature) was found to be around 32 °C and was slightly dependent on the concentration of the cationic monomer. The volume phase-transition temperature range becomes broader with increasing cationic monomer concentration. In addition, the pH of the polymerization medium was found to affect the final particle size and amount of water-soluble polymer formed. Received: 29 March 2001 Accepted: 2 July 2001  相似文献   

12.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A novel water‐dispersible reactive microgel, which had a diameter of 40–90 nm, was synthesized for photopolymer materials. The microgels have segments with substituted ammonium groups, to provide water solubility, in their polymer networked structure. It has unsaturated groups connected to the quaternary nitrogens by ionic bonding (I‐type microgel). The I‐type microgel was compared with one that has methacryloyl groups connected with the quaternary nitrogens of the microgel by covalent bonding (C‐type microgel). The I‐type microgels were able to separately control the modified amount of quaternary nitrogen and methacryloyl group. In the presence of 2,4‐diethylthioxantone as a photoinitiator and pentaerthritol triacrylate as a crosslinker, the photopolymer containing the C‐type or I‐type microgels had sensitivity high enough for practical use. Not only the amount of the methacryloyl group of the microgel but the amount of the quaternary nitrogen affected the sensitivity and the rate of polymerization of the water‐dispersible photopolymer containing the I‐type microgels. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Vinylbenzyl S-thioacetate ( 1 ) was prepared from thioacetic acid and chloromethylstyrene. Although bulk polymerization of 1 afforded a crosslinked polymer, solution polymerization in chlorobenzene afforded a corresponding soluble polymer. The S-thioacetate group did not react during the radical polymerization of 1 . Bulk copolymerization of 1 with styrene afforded a soluble copolymer when the feed ratio of 1 was lower than 30 mol %. Soap-free emulsion copolymerization of 1 , St, divinylbenzene, and 2-hydroxyethyl methacrylate (66 : 28 : 1 : 5) was carried out in water using 2,2′-azobis (N,N′-dimethyleneisobutyramidine) dichloride as an initiator to afford uniform spherical microgel 2 , whose average diameter was 135 nm. Aminolysis of 2 with an excess amount of butylamine in the presence of sodium tetrahydridoborate followed by treatment with hydrochloric acid resulted in complete removal of the acetyl group to give a slightly distorted spherical microgel (MG-SH) bearing mercapto group. The average diameter of MG-SH was 165 nm. Trans-esterification of p-nitrophenyl acetate ( 3 ) in the presence of triethylamine was efficiently accelerated by the addition of MG-SH. The radical polymerization of methyl methacrylate (MMA) in the presence of suspended MG-SH in chlorobenzene afforded the MMA-grafted microgel. Although MG-SH is a crosslinked gel, it acts as a soluble polymer bearing mercapto group. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1443–1451, 1997  相似文献   

15.
The influence of the cross-link density on rheological properties of thermosensitive microgels was investigated. The temperature-sensitive hydrogel particles consisted of poly (N-isopropylacrylamide) (PNiPAM) chemically cross-linked with several different molar ratios of N,N′-methylenebisacrylamide. The variation of cross-link density leads to soft spheres that possess a different particle interaction potential and a different swelling ratio. With increasing temperature the microgel particles decrease in size and with it the effective volume fraction, which leads to strong changes in rheological properties. The relative zero-shear viscosity and the plateau modulus at different temperatures superpose to mastercurves when plotted versus the effective volume fraction. Up to an effective volume fraction of 0.5 the microgels behaved like hard spheres and the maximum volume fraction, as determined from the divergence of the zero-shear viscosity, was mainly dominated by the polydispersity of the spheres and not by the cross-link density. The plateau modulus, on the other hand, revealed soft-sphere behavior and the interaction potential became softer with decreasing cross-linker content. Received: 15 December 1999 Accepted: 15 February 2000  相似文献   

16.
Polyurethane (PU) acrylate microgels were obtained by emulsion polymerization of self-emulsified PU acrylate terminated by 2-hydroxyethyl methacrylate without any extra emulsifier and crosslinker. Moreover, the PU acrylate was also used as stabilizer and crosslinker to synthesize poly(methyl methacrylate) (PMMA)–PU composite microgels via emulsion polymerization, which provided a new method to synthesize PU microgels and their composite microgels. The kinetics of microgel synthesis was studied by gel permeation chromatography. The dynamic rheological behaviors indicated that a crosslinked structure was formed. The frequency dependency of the loss tangent and complex viscosities showed strong relationships with the microgel structure. Those microgels with rigid PMMA core showed higher ability to slide than the soft PU acrylate microgel, which had influence on the changing of loss tangent with frequency. All the microgels swollen in tetrahydrofuran exhibited high viscosities and strong shear-thinning behaviors. As a sort of flexible microgel, the PU microgel was able to form a coherent film at room temperature, which was distinct from hard microgels.  相似文献   

17.
In this research, we studied, in detail, the behavior of common PNIPAM microgels, obtained through surfactant-free precipitation polymerization, in a number of organic solvents. We showed that many of the selected solvents serve as good solvents for the PNIPAM microgels and that the size and architecture of the microgels depend on the solvent chosen. Expanding the range of solvents used for PNIPAM microgel incubation greatly enhances the possible routes for microparticle functionalization and modification, as well as the encapsulation of water-insoluble species. In this demonstration, we successfully encapsulated water-insoluble Sudan III dye in PNIPAM microgels and prepared the aqueous dispersions of such composite-colored microparticles.  相似文献   

18.
《Mendeleev Communications》2023,33(4):559-561
Electrochemical responses of glucose oxidase loaded (via electrostatic immobilization) into a surface-attached pH- and temperature-sensitive copolymer microgel were examined. The observed temperature behavior of the immobilized enzyme provides evidence that such systems enable pH-dependent regulation of activity of glucose oxidase by a (repeated) temperature cycling, which reversibly transforms the polymeric (microgel) matrix from the swollen state to the collapsed one.  相似文献   

19.
制备戊二醛交联的PVP/CH I共混水凝胶,红外光谱佐证了凝胶网络的生成。pH敏感性实验表明,凝胶的溶胀率在pH=1.0的介质中最大,在pH=4.0的介质中次之,在中性或pH=9.0的碱性介质中最低,表明凝胶具有明显的pH敏感性。CH I含量、交联剂用量、CH I脱乙酰度均对凝胶的pH敏感性有影响,CH I含量40%、交联剂用量0.3%、CH I脱乙酰度99%的PVP/CH I凝胶pH敏感性较显著。介质pH值由1.0到7.0变化时,凝胶拉伸强度随着溶胀率的降低而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号