首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simple neutral diazenium diolate, O2-methyl-1-(N, N-dimethylamino)diazen-1-ium-1,2-diolate, [Me2NN(O)=NOMe], was experimentally examined by vibrational spectroscopy and the results compared to the theoretically calculated values in an effort to detect both Z and E conformers which result from the stereochemistry of the N=N multiple bond. Room-temperature Raman and infrared spectra were measured and the results compared with the values calculated theoretically with MP2 and density functional techniques (B3LYP). An analysis of the observed frequencies suggests that, down to a detection limit of about 1/1000, only a small quantity of trans (E) diazeniumdiolate, <0.05%, may be present at room temperature.  相似文献   

2.
Monomethylation of the potentially ambident RNH[N(O)NO](-) ion (R = isopropyl or cyclohexyl) has been shown to occur at the terminal oxygen to yield the novel diazeniumdiolate structural unit, RNHN(O)=NOMe. The NH bond of the product proved acidic, with a pK(a) of 12.3 in aqueous solution. The ultraviolet spectrum showed a large bathochromic shift on ionization (lambda(max) 244 --> 284 nm, epsilon(max) 6.9 --> 9.8 mM(-1) cm(-1)). Deprotonation led to a pH-dependent line broadening in the (1)H NMR spectrum of iPrNHN(O)=NOMe, suggesting a complex fluxionality possibly involving isomerizations around the N-N bonds. Consistent with this interpretation, evidence for extensive delocalization and associated changes in bond order on ionizing RNHN(O)=NOR' were found in density functional theory calculations using Gaussian 03 with B3LYP/6-311++G basis sets. With MeNHN(O)=NOMe as a model, all N-N and N-O bonds lengthened by 0.04-0.07 A as a result of ionization except for the MeN-N linkage, which shortened by 7%. These anions can be N-alkylated to generate R(1)R(2)NN(O)=NOR(3) derivatives that would otherwise be difficult to access synthetically. Additionally, some RNHN(O)=NOR' species may display unique and beneficial pharmacological properties. As one example, an agent with R = isopropyl and R' = beta-D-glucosyl was prepared and shown to generate nitric oxide in the presence of glucosidase at pH 5.  相似文献   

3.
The electronic structure and geometries of (Z)- and (E)-H-CON- N+(CH3)3 have been examined at two levels of theory: B3LYP (basis sets 6-311+G(d,p), 6-311++G(d,p), and 6-311G(3df,3pd)) and MP2(full)/6-311++G(d,p). The (Z) conformation about the C(O)-N(-) bond is thermodynamically preferred over the (E) configuration. Natural bond orbital calculation locates one lone pair of the N- in the HOMO, which is the p(z) natural hybrid orbital (perpendicular to the O=CN- N+ plane). The second lone pair (of lower energy) of N- occupies the HOMO-3, which is the natural hybrid orbital sp(1.12) (sp(1.01) for the (E) conformation, sp(1.74) in the rotational transition state). The carbonyl pi bond is the HOMO-2. The charge-transfer ability of the negative nitrogen in H-CON- N+ (CH3)3 is more powerful than that of the neutral amidic nitrogen in dimethylformamide. The following facts convincingly sustain this view: (1) the higher rotational barrier (stronger C-N(-) bond) in the case of H-CON- N+ (CH3)3, (2) natural resonance theory analysis predicts almost equal weights for the (Z)-H-C(=O)N- N+ (CH3)3 and the (Z)-H-C(O-)=NN+ (CH3)3 canonical resonance structures whereas the weight of the HCON(CH3)2 structure is almost twice as large as that of HC(O-)=N+ (CH3)2, and (3) the second-order perturbation stabilization, as a result of the donor (N-)/acceptor (carbonyl) interaction, is 101.3 kcal/mol for H-CON- N+ (CH3)3 and only 64.4 kcal/mol for dimethylformamide.  相似文献   

4.
Carbinols of the Ar-C(OH)R(2) type, Ar being o-isopropylphenyl, exist as stereolabile syn-clinal (sc) and anti-periplanar (ap) atropisomers when R = Me, Et, i-Pr. In the latter compound, the major atropisomer also comprises two enantiomeric forms that interchange with a barrier of 6.4 kcal mol(-1). X-ray diffraction, NOE experiments, and ab initio calculations indicate that the sc-atropisomer is the more stable form when R = Me, i-Pr, t-Bu but is the less stable one when R = Et. NMR spectra at variable temperature allowed the determination of the barriers for the interconversion of the sc- into the ap-atropisomers (DeltaG++ = 7.6, 8.8, and 13.5 kcal mol(-1) for Me, Et, i-Pr, respectively). When R is a tert-butyl group, the two atropisomers are configurationally stable: the ap-atropisomer is obtained as the kinetic controlled compound, which can be transformed into the thermodynamically more stable sc-atropisomer with a free energy of activation of 29.3 kcal mol(-1). Both atropisomers exhibit restricted rotation of the tert-butyl moiety, the corresponding DeltaG++ values being 9.4 and 8.8 kcal mol(-1) for the sc- and ap-atropisomer, respectively.  相似文献   

5.
《Tetrahedron: Asymmetry》2000,11(10):2107-2115
The baker's yeast reduction of (E)-1-phenyl-1,2-alkanedione 2-(O-methyloxime), PhC(O)C(NOMe)R (R=Me, Et, n-Pr, n-Bu), gave the corresponding optically active alcohols PhCH2OHC(NOMe)R in 88–99% enantiomeric excess and 48–75% chemical yield. The R configuration was proposed for these alcohols based on circular dichroism analysis. Only the phenylglyoxal O-methylaldoxime (R=H) gave poor enantiomeric excess (65%) and chemical yield (14%). These compounds are potential chiral building blocks for the stereoselective synthesis of norephedrine analogs.  相似文献   

6.
The structures of anilido cyano(fluoroalkoxycarbonyl)methanes ArNHCOCH(CN)CO(2)R, where R = CH(2)CF(3) or CH(CF(3))(2), Ar = p-XC(6)H(4), and X = MeO, Me, H, or Br, were investigated. In the solid state, all exist as the enols ArNHC(OH)=C(CN)CO(2)R 7 (R = CH(2)CF(3)) and 9 (R = CH(CF(3))(2)) with cis arrangement of the hydrogen-bonded ROC=O.HO moiety and a long C1=C2 bond. The product composition in solution is solvent dependent. In CDCl(3) solution, only a single enol is observed, whereas in THF-d(8) and CD(3)CN, two enols (E and Z) are the major products, and the amide is the minor product or not observed at all (K(Enol) 1.04-9 (CD(3)CN, 298 K) and 3 to >/=100 (THF, 300 K)). The percentage of the amide and the Z-enol increase upon an increase in temperature. In all solvents, the percent enol is higher for 9 than for 7. In CD(3)CN, more enol is observed when the aryl group is more electron-donating. The spectra in DMSO-d(6) and DMF-d(7) indicate the presence of mostly a single species, whose spectra do not change on addition of a base and is ascribed to the anion of the ionized carbon acid. Comparison with systems where the CN is replaced by a CO(2)R group (R = CH(2)CF(3), CH(CF(3))(2)) shows a higher percentage of enol for the CN-substituted system. Intramolecular (to CO(2)R) and intermolecular hydrogen bonds determine, to a significant extent, the stability of the enols, their Z/E ratios (e.g., Z/E (THF, 240 K) = 3.2-4.0 (7) and 0.9-1.3 (9)), and their delta(OH) in the (1)H spectra. The interconversion of Z- and E-enol by rotation around the C=C bond was studied by DNMR, and DeltaG() values of >/=15.3 and 14.1 +/- 0.4 kcal/mol for Z-7 and Z-9 were determined. Features of the NMR spectra of the enols and their anions are discussed.  相似文献   

7.
The synthesis and structure of a novel beta-diketiminato Co(I) arene adduct [Me2NN]Co(eta6-toluene) (2) are described, that serves as a synthon to the reactive, "naked" 12-electron [Me2NN]Co fragment via loss of toluene in its reactions with dioxygen, organoazides, and a nitrosobenzene. Exposure of 2 to dioxygen in ether leads to {[Me2NN]Co}2(mu-O)2 (3), a rare example of a cobalt-oxo complex thermally stable at room temperature. The X-ray structure of 3 reveals a short Co-Co separation of 2.716(4) A and exhibits positional disorder for the bridging oxo groups; the predominant configuration contains oxygen atoms in square-planar sites with short Co-O distances (1.784(3) and 1.793(4) A). Reaction of 2 with organoazides N3R (R = 3,5-Me2C6H3 (Ar) or 1-adamantyl (Ad)) results in the formation of imido complexes whose structure depends on the nature of the azido substituent. The synthesis and structures of both {Me2NN]Co}2(mu-NAr)2 (4) with arylimido groups in tetrahedral bridging sites or the three-coordinate, 16-electron [Me2NN]CoNAd (5) are described. The X-ray structure of terminal imide 5 reveals a short Co-N bond distance (1.624(4) A) and only somewhat bent imido linkage (Co-N-C = 161.5(3) degrees ) consistent with a significant degree of multiple bond character. Complex 2 cleaves the O=N bond of the nitrosobenzene O=NAr (Ar = 3,5-Me2C6H3) to form the binuclear oxo-imido complex {[Me2NN]Co}2(mu-O)(mu-NAr) (6) that possesses a structure intermediate between square-planar 3 and tetrahedral 4 in which the [Me2NN]Co fragments are mutually orthogonal.  相似文献   

8.
Lithium complexes bearing dianionic amine bis(phenolate) ligands are described. Reactions of ligand precursors H(2)O(2)NN(Me), H(2)O(2)NN(Py) or H(2)O(2)NO(Me) [H(2)O(2)NN(Me)=Me(2)NCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NN(Py)=(2-C(5)H(4)N)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NO(Me)=MeOCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2)] with 2.2 molar equivalents of (n)BuLi in diethylether afford (Li(2)O(2)NN(Me))(2) (1), (Li(2)O(2)NN(Py))(2) (2) and (Li(2)O(2)NO(Me))(2) (3) as tetra-nuclear lithium complexes. The crystalline solids of partially hydrolyzed product, (LiO(HO)NN(Py)) (4), were obtained from recrystallization of 2 in diethylether solution for three months. The synthesis of (LiO(HO)NO(Me))(2) (5) was carried out at ambient temperature by carefully layering a solution of water in hexane on top of a solution of 3 in Et(2)O. Crystalline solids of were obtained after two months. Molecular structures are reported for compounds 1, 3, 4 and 5. Compounds 1-3 show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

9.
We have found O(2)-substituted diazeniumdiolates, compounds of structure R(2)N-N(O)=NOR' that are under development for various possible pharmaceutical uses, to be rather photosensitive. With R = ethyl and R' = methyl, benzyl, or 2-nitrobenzyl, the observed product distributions suggest that two primary pathways are operative. A minor pathway involves the extrusion of nitrous oxide (N(2)O) with simultaneous generation of R(2)N(*) and R'O(*), which may then form amines, aldehydes, and alcohols. The major reaction pathway is an interesting photochemical cleavage of the N=N bond to form a nitrosamine (R(2)NN=O) and an oxygen-substituted nitrene (R'ON). The intermediacy of the O-nitrene was inferred from the production of abundant oxime, via rearrangement of the O-nitrene to a C-nitroso compound (R'ON --> O=NR'), and subsequent tautomerization to the more stable oxime. Involvement of the O-nitrene was confirmed by trapping with 2,3-dimethyl-2-butene to form the aziridine and with oxygen to generate the nitrate ester. 2-Nitro substitution on the benzyl derivative had surprisingly little effect on the reaction course. For each compound examined, minor amounts of nitric oxide (NO), presumably produced by secondary photolysis of the nitrosamine, were observed. Time-resolved infrared experiments provided additional support for the above reaction pathways and confirmed that the nitrosamine is a primary photoproduct. We have also found that the relative contributions of the reaction pathways can be altered in certain derivatives. For example, when R' = 2,4-dinitrophenyl, the contribution of the nitrosamine/O-nitrene-forming pathway was diminished. Pharmacological implications of these results are discussed.  相似文献   

10.
The structures of seven gas phase identity S(N)2 reactions of the form CH(3)X + X(-) have been characterized with seven distinct theoretical methods: RHF, B3LYP, BLYP, BP86, MP2, CCSD, and CCSD(T), in conjunction with basis sets of double and triple zeta quality. Additionally, the energetics of said reactions have been definitively computed using focal point analyses utilizing extrapolation to the one-particle limit for the Hartree-Fock and MP2 energies using basis sets of up to aug-cc-pV5Z quality, inclusion of higher order correlation effects [CCSD and CCSD(T)] with basis sets of aug-cc-pVTZ quality, and additional auxiliary terms for core correlation and scalar relativistic effects. Final net activation barriers for the reactions are E(b)(F,F)= -0.8, E(b)(Cl,Cl)= 1.6, E(b)(CN,CN)= 28.7, E(b)(OH,OH)= 14.3, E(b)(SH,SH)= 13.8, E(b)(NH2,NH2)= 28.6, and E(b)(PH2,PH2)= 25.7 kcal mol(-1). General trends in the energetics, specifically the performance of the density functionals, and the component energies of the focal point analyses are discussed. The utility of classic Marcus theory as a technique for barrier predictions has been carefully analyzed. The standard Marcus theory results show disparities of up to 9 kcal mol(-1) with respect to explicitly computed results. However, when alternative approaches to Marcus theory, independent of the well-depths, are considered, excellent performance is achieved, with the largest deviations being under 3 kcal mol(-1).  相似文献   

11.
用硒酚铜簇合物和硫酚铜簇合物[Me4N]2[Cu4(EPh)6](E=Se和S)与CS2及少量S反应,分别获得了以过硫代碳酸根[CS4]^2-为配体的[Me4N]n[Cu(CS4)]n(I)和[Me4N]4[Cu4(CS4)4](Ⅱ)。并用X射线单晶衍射法测定了它们的晶体结构。I为二维层状聚合物,Ⅱ为四核铜簇阴离子化合物。并对[CS4]^2-形成的机理作了讨论。  相似文献   

12.
An investigation of potential photosensitive protecting groups for diazeniumdiolates (R2N-N(O)=NO-) has been initiated, and here the effect of meta electron-donating groups on the photochemistry of O2-benzyl-substituted diazeniumdiolates (R2N-N(O)=NOCH2Ar) is reported. Photolysis of the parent benzyl derivative (Ar = Ph) results almost exclusively in undesired photochemistry-the formation of nitrosamine and an oxynitrene intermediate with very little, if any, photorelease of the diazeniumdiolate. We have been able to use meta substitution to tune the photochemistry of these benzylic systems. The desired diazeniumdiolate photorelease has been shown to become more substantial with stronger pi-donating meta substituents. This effect has been verified by direct observation of the photoreleased diazeniumdiolate with 1H NMR spectroscopy and by NO quantification measurements conducted in high- and low-pH solutions. In addition, the observed rates of NO release are consistent with that expected for normal thermal decomposition of the diazeniumdiolate in aqueous solutions and also show the same pH dependence.  相似文献   

13.
Coupling reactions of allenylphosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH=C=CRR' [R, R' = H (1a), R = H, R' = Me (1b), R = R' = Me (1c)] with aryl iodides, iodophenol, and iodobenzoic acid in the presence of palladium(II) acetate are investigated and compared with those of phenylallenes PhCH=C=CR2 [R = H (2a), Me (2b)] and allenyl esters EtO(2)CCH=C=CR(2) [R = H (2c), Me (2d)]. While 1b and 1c couple with different stereochemical outcomes using PhI in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give phenyl-substituted 1,3-butadienes, 1a does not undergo coupling but isomerizes to the acetylene (OCH(2)CMe(2)CH(2)O)P(O)CCMe (7). In the reaction of 1c with PhI, use of K(2)CO(3) affords the butadiene (Z)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Ph)-C(Me)=CH(2) (12); in contrast, the use of Ag(2)CO(3) leads to the allene (OCH(2)CMe(2)CH(2)O)P(O)C(Ph)=C=CMe(2) (20), showing that these bases differ very significantly in their roles. The reaction of 1a with PhI or PhB(OH)2 in (t)he presence of Pd(OAc)2/CsF/DMF leads mainly to (E)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Me)Ph (21) and (OCH(2)CMe(2)CH(2)O)P(O)CH2-C(Ph)=CH(2) (22) and is thus a net 1,2-addition of Ph-H. Compound 1b reacts with iodophenol in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give a benzofuran that has a structure different from that obtained by using 1c under similar conditions. Treatment of 1a with iodophenol/Pd(OAc)(2)/CsF/DMF also gives a benzofuran whose structure is different from that obtained by using 2a under similar conditions. In the reaction with 2-iodobenzoic acid, 1a and 2c afford one type of isocoumarin, while 1b,c and 2a,b give a second type of isocoumarin. The structures of key compounds are established by X-ray crystallography. Utility of the phosphonate products in the Horner-Wadsworth-Emmons reaction is demonstrated.  相似文献   

14.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

15.
S-Nitrosothiols RSNO represent circulating reservoirs of nitric oxide activity in the plasma and play intricate roles in protein function control in health and disease. While nitric oxide has been shown to reductively nitrosylate copper(II) centers to form copper(I) complexes and ENO species (E = R(2)N, RO), well-characterized examples of the reverse reaction are rare. Employing the copper(I) β-diketiminate [Me(2)NN]Cu, we illustrate a clear example in which an RS-NO bond is cleaved to release NO(gas) with formation of a discrete copper(II) thiolate. The addition of Ph(3)CSNO to [Me(2)NN]Cu generates the three-coordinate copper(II) thiolate [Me(2)NN]CuSCPh(3), which is unstable toward free NO.  相似文献   

16.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

17.
The stereochemistry of anionic polymerization of vinyl monomers: CH2=C(R)C(Y)=X where X and Y are O, N or C and R = H or alkyl is discussed in terms of a: the geometry of the -CH2C-(R)C(Y)=X intermediate existing as E- or Z-isomers; b: the interactions of cation (Li, Na, etc.) with the anion and coordinating groups on the penultimate or antepenultimate asymmetric carbon. The E/Z ratio appears to be determined directly by the s-trans/s-cis approach of the monomer. The nature of the coordination of the counter ion is considerably more complicated and is discussed in detail.  相似文献   

18.
The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).  相似文献   

19.
NMR spectra of biphenyl derivatives bearing a single CR2OH substituent in the ortho position indicate that they exist as sp (more stable) and ap (less stable) conformers, due to the restricted rotation about the Ar-CR2OH bond. When R = Et (compound 2) the corresponding rotation barrier was determined (7.5 kcal mol-1) by line shape simulation of the low-temperature NMR spectra. Introduction of the prochiral i-Pr group in the position 3' of a biphenyl with the CMe2OH substituent in the position 2 (4) allowed the determination of the enantiomerization barrier (due to the Ar-Ar bond rotation) for the stereolabile axially chiral atropisomers (13.95 kcal mol(-1)). DFT computations of these barriers were all in agreement with the experiments. Biphenyls bearing two CR2OH groups in the 2,2' positions were found to exist as configurationally stable atropisomers: when R = Me (7) they were separated by enantioselective HPLC and the absolute configuration assigned on the basis of the corresponding CD spectra. In solution, compounds 6 (R = H) and 7 (R = Me) were found to originate a dimer, due to H-bond interactions between two enantiomers. In the case of 7, the free energy of activation (9.5 kcal mol-1) for the exchange of the monomer with the dimer could be measured, for the first time, by dynamic NMR. The conformational preferences, predicted by computations for the biphenyls with two CR2OH substituents in the 2,2' positions, were confirmed by X-ray diffraction in the case of R = H (6), R = Me (7), and R = i-Pr (9).  相似文献   

20.
有机锗硫杂环戊酮化合物的合成   总被引:3,自引:0,他引:3  
合成了14个1,1-二氯-1,2-锗硫杂-3-环戊酮等四类新型锗硫杂五元环化合物, 元素分析、红外光谱、氢核磁共振谱以及质谱分析验证了它们的组成及结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号