首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the ν=2 bilayer quantum Hall (QH) state in clean two-dimensional electron systems (2DESs) to study effects due to not only the layer degree of freedom called pseudospin but also the real spin degree of freedom. The novel canted antiferromagnetic phase (CAF phase) has been predicted to emerge from subtle many-body electron interactions between the singlet (S) and ferromagnet (F) phases. Though several experiments indicate an onset of the CAF phase, a systematic transport study is not yet to be demonstrated. We have carried out magnetotransport measurements of the ν=2 bilayer QH state using a sample with tunneling energy . Activation energy was precisely measured as a function of the total density of the 2DES and the density difference between the two layers. Results support an appearance of the CAF phase between the S and F phases.  相似文献   

2.
The nuclear-spin-relaxation rate 1/T(1) has been measured in a bilayer electron system at and around total Landau level filling factor nu=1. The measured 1/T(1), which probes electron spin fluctuations, is found to increase gradually from the quantum Hall (QH) state at low fields through a phase transition to the compressible state at high fields. Furthermore, 1/T(1) in the QH state shows a noticeable increase away from nu=1. These results demonstrate that, as opposed to common assumption, the electron spin degree of freedom is not completely frozen either in the QH or the compressible states.  相似文献   

3.
The bilayer quantum Hall (QH) state at the filling factor ν=1 shows various fascinating quantum phenomena due to the layer degree of freedom called ‘pseudospin’. We report an experimental evidence of the soliton lattice (SL) phase, which is a domain structure of pseudospin, by the appearance of a local maximum of magnetoresistance near the ν=1 QH state. We investigate the stability of the SL phase by changing B and the total electron density nT. Detailed magnetotransport measurements under tilted magnetic fields were carried out to obtain a BnT plane phase diagram containing the C, IC and SL phases. We found the SL phase is only stable at low nT region. Namely, the C–SL–IC phase transition occurs only at low nT region as B increases. On the contrary, the C–IC phase transition directly occurs without passing through the SL phase at high nT region.  相似文献   

4.
We observe the total filling factor νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems in samples with minute tunnel coupling. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB<1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy.  相似文献   

5.
Recent experiments on quantum Hall bilayers in the vicinity of total filling factor 1 (νT=1) have revealed many exciting observations characteristic of a superfluidic exciton condensate. We report on our experimental work involving the νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems. We observe previously reported phenomena as a zero-bias resonant tunneling peak, a quantized Hall drag resistivity, and in counter-flow configuration, the near vanishing of both ρxx and ρxy resistivity components. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB<1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy.  相似文献   

6.
The temperature dependence of ρxx is studied in the vicinity of the quantum Hall to quantum Hall insulator transition (ν=1→0) in InSb/InAlSb based 2DESs. ρxx displays a symmetric temperature dependence about the transition with on the QH side and on the insulating side. A plot of 1/T0 for successive ν displays power-law divergence with 1/T0∝|ν−νc|−γ,2 with γ=2.2±0.3. This critical behavior in addition to the behavior expected of the quantum transport regime confirms that the QH/QHI transition is indeed a good quantum phase transition.  相似文献   

7.
We report inelastic light scattering measurements of spin excitations on coupled electron bilayers with relatively large tunneling gaps at total filling factor νT=1. We show that the pseudospin polarization order parameter, where the pseudospin labels the occupation of symmetric and antisymmetric levels, can be determined from the energy of long wavelength spin excitations. Our experiments indicate that the order parameter in the quantum Hall ground state collapses at the incompressible–compressible phase transition. The latter is driven by decreasing the tunneling gap through the application of an in-plane magnetic field.  相似文献   

8.
We report on low-temperature thermopower measurements of interacting GaAs bilayer hole systems in the limit of no interlayer tunneling. These systems exhibit a reentrant insulating phase near the many-body quantum Hall state (QHS) at total filling factor ν=1, when both layers have the same density. The diffusion thermopower is expected to diverge as T-1 in the presence of an energy gap (Wigner crystal) or to vanish in the case of a disordered induced mobility gap. Our results show that, as the temperature is decreased, the diffusion thermopower exhibits a T-1 dependence in the insulating phase around ν=1. This behavior clearly indicates the opening of an energy gap at low temperature, in agreement with the formation of a pinned Wigner solid. Finally, we report on the T-dependence of the thermopower at ν=1.  相似文献   

9.
《Physics letters. A》1997,229(6):392-400
We analyze the bilayer quantum Hall (QH) system by mapping it to the monolayer QH system with spin degrees of freedom. By this mapping the tunneling interaction term is identified with the Zeeman term. We clarify the mechanism of a spontaneous development of quantum coherence based on the Chern-Simons gauge theory with the lowest-Landau-level projection taken into account. The symmetry group is found to be W × SU(2), which says that the spin rotation affects the total electron density nearby. Using it extensively we construct the Landau-Ginzburg theory of the coherent mode. Skyrmion excitations are topological solitions in this coherent mode. We point out that they are detectable by measuring the Hall current distribution.  相似文献   

10.
Tilted field magnetotransport study was performed in a two-valley strained Si quantum well and hysteretic diagonal resistance spikes were observed near the coincidence angles. The spike around filling factor ν=3 develops into a giant feature when it moves to the high-field edge of the quantum Hall (QH) state and quenches for higher tilt angles. When the spike is most prominent, its peak resistance is temperature independent from T20 mK up to 0.3 K, which is different from the critical behavior previously reported near the Curie temperature of the QH ferromagnet in AlAs quantum wells. Our data suggest a strong interplay between spins and valleys near the coincidence.  相似文献   

11.
We report measurements of the spin relaxation time (T1n) for nuclei in the potential well confining a high-mobility two-dimensional electron system at a single GaAs–GaAlAs heterojunction. At low temperatures nuclear spin relaxation is dominated by electron–nuclear spin scattering: we find that T1n displays sharp maxima at incompressible states throughout the hierarchy of the fractional quantum Hall effect. This behaviour is consistent with the existence of low-energy spin excitations only where the electron system is compressible. Our measurements also provide evidence for a gap in the spin excitation spectrum at .  相似文献   

12.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

13.
Spectroscopy of local cyclotron emission from the hot spots is carried out on a GaAs/AlGaAs heterostructure two-dimensional electron gas system at B=6 T (ν=2.5) by applying a terahertz scanning microscope. The spectra of CE at the current entry and exit corners (hot spots) are remarkably broadened towards lower frequencies with increasing I up to 300 μA, indicating substantial relevance of non-equilibrium electrons generated in higher-level LLs; in terms of effective electron temperature, TE reaching as high as 300 K is suggested while TE=25–30 K on an average in the surrounding region (within a distance of 50 μm) about the hot point.  相似文献   

14.
We review magneto-transport properties of interacting GaAs bilayer hole systems, with very small inter-layer tunneling, in a geometry where equal currents are passed in opposite directions in the two, independently contacted layers (counterflow). In the quantum Hall state at total bilayer filling ν=1 both the longitudinal and Hall counterflow resistances tend to vanish in the limit of zero temperature, suggesting the existence of a superfluid transport mode in the counterflow geometry. As the density of the two layers is reduced, making the bilayer more interacting, the counterflow Hall resistivity (ρxy) decreases at a given temperature while the counterflow longitudinal resistivity (ρxx), which is much larger than ρxy, hardly depends on density. Our data suggest that the counterflow dissipation present at any finite temperature is a result of mobile vortices in the superfluid created by the ubiquitous disorder in this system.  相似文献   

15.
We have obtained population inversion of a system of polarized (P=80%) electron spins in a solid during a very fast (dB z dt=4·105 T·s –1) reversal of the external magnetic field. The electrons were trapped at oxygen vacancies in CaO single crystals. This method, whch does not exploit any high frequency electromagnetic field, has been for the first time successfully used to achieve an inverted state of electron spins in a solid. The negative temperature of an electron spin ensembleT=–23 mK has been obtained.  相似文献   

16.
Integer and fractional quantum Hall (QH) effects are studied in bilayer electron systems both theoretically and experimentally, especially, at ν=2 and 2/3. Due to the spin and layer degrees of freedom, the SU(4) symmetry underlies the integer QH states, where quantum coherence develops spontaneously and quasiparticles are coherent excitations. It is intriguing that a pair of skyrmions makes one quasiparticle at ν=2. In the fractional QH regime, on the other hand, the composite-fermion cyclotron gap competes with the Zeeman and tunneling gaps, bringing in new phases and excitations. At ν=2/3 our experimental data suggest that a quasiparticle is not a coherent excitation but simply a composite fermion.  相似文献   

17.
18.
Curie temperature TC of spin arrangement with arbitrary dimension was considered. We assumed that interaction of a spin with all other spins vary with a power-law decay rate in exchange integral on Heisenberg model. As a result, we found that TC, which was obtained from TC=λC (λ: mean-field coefficient and C: Curie constant), significantly depends on fractal dimension of spin arrangements D, the exchange integral and the decay constant. This semi-quantitatively explains how TC depends on D (1≤D≤3) in a universal way and also the finite size effect on TC in low-dimensional spin systems.  相似文献   

19.
The rotational structure of the ν3 fundamental of 14N16O2 has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 R- and P-branch transitions in the spectral region 1562–1650 cm−1. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained and the band center ν0 = 1616.846 cm−1 differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.  相似文献   

20.
We theoretically study an enhancement of the Kondo effect in quantum dots with two orbitals and spin . The Kondo temperature and conductance are evaluated as functions of energy difference Δ between the orbitals, using the numerical renormalization group method. The Kondo temperature is maximal around the degeneracy point (Δ=0) and decreases with increasing |Δ| following a power law, TK(Δ)=TK(0)(TK(0)/|Δ|)γ, which is consistent with the scaling analysis. The conductance at T=0 is almost constant 2e2/h. Both the orbitals contribute to the conductance around Δ=0, whereas the current through the upper orbital is negligibly small when |Δ|TK(0). These are characteristics of SU(4) Kondo effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号