首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Receptor-mediated targeting of nanometric contrast agents or drug carriers holds great potential for treating cardiovascular and vascular-associated diseases. However, predicting the ability of these vectors to adhere to diseased cells under dynamic conditions is complex due to the interplay of transport, hydrodynamic force, and multivalent bond formation dynamics. Therefore, we sought to determine the effects of adhesion molecule density and flow rate on adhesion of 210 nm particles, with the goal of identifying criteria to optimize binding efficiency and selectivity. Our system employed a physiologically relevant ligand, the vascular adhesion molecule ICAM-1, and an ICAM-1 specific antibody tethered to the nanoparticle using avidin-biotin chemistry. We measured binding and dissociation of these particles in a flow chamber as a function of antibody density, ligand density, and flow rate, and using a transport-reaction model we distilled overall kinetic rate constants for adhesion and detachment from the binding data. We demonstrate that both attachment and detachment of 210 nm particles can be correlated with receptor and ligand valency and are minimally affected by shear rate. Furthermore, we uncovered a time-dependent mechanism governing particle detachment, in which the rate of detachment decreases with contact time according to a power law. Finally, we use our results to illustrate how to engineer adhesion selectivity for specific molecular targeting applications. These results establish basic principles dictating nanoparticle adhesion and dissociation and can be used as a framework for the rational design of targeted nanoparticle therapeutics that possess optimum adhesive characteristics.  相似文献   

2.
This note documents the crossover from a regime where shear flow hinders microparticle adhesion on collecting surfaces to that where increased flow aids particle capture. Flow generally works against adhesion and successfully hinders particle capture when the net physicochemical attractions between the particles and collector are weak compared with hydrodynamic forces on the particle. Conversely, with strong attractions between particles and collector, flow aids particle capture by increasing the mass transport of particles to the interfacial region. Here, local hydrodynamics still generally oppose adhesion but are insufficient to pull particles off of the surface. Thus, flow actually increases the particle capture rate through the increased transport to the surface. These behaviors are demonstrated using 1 mum silica spheres flowing over electrostatically heterogeneous (length scales near 10 nm) collecting surfaces at shear rates from 22 to 795 s(-1). The net surface charge on the collector is varied systematically from strongly negative (pure silica) to strongly positive (a saturated polycationic overlayer), demonstrating the interplay between physicochemical and hydrodynamic contributions. These results clearly apply to situations where heterogeneous particle-surface interactions are electrostatic in nature; however, qualitatively similar behavior was previously reported for the effect receptor density on bacterial adhesion.  相似文献   

3.
Dynamic particle adhesion from flow over collecting surfaces with nanoscale heterogeneity occurs in important natural systems and current technologies. Accurate modeling and prediction of the dynamics of particles interacting with such surfaces will facilitate their use in applications for sensing, separating, and sorting colloidal-scale objects. In this paper, the interaction of micrometer-scale particles with electrostatically heterogeneous surfaces is analyzed. The deposited polymeric patches that provide the charge heterogeneity in experiments are modeled as 11-nm disks randomly distributed on a planar surface. A novel technique based on surface discretization is introduced to facilitate computation of the colloidal interactions between a particle and the heterogeneous surface based on expressions for parallel plates. Combining these interactions with hydrodynamic forces and torques on a particle in a low Reynolds number shear flow allows particle dynamics to be computed for varying net surface coverage. Spatial fluctuations in the local surface density of the deposited patches are shown responsible for the dynamic adhesion phenomena observed experimentally, including particle capture on a net-repulsive surface.  相似文献   

4.
5.
Poly(glycerol monomethacrylate)-stabilized polystyrene (PGMA-PS) latex particles undergo specific, pH-dependent adsorption onto regenerated cellulose film bearing surface phenylboronic acid groups (cellulose-PBA). Deposition occurs at pH 10 and is driven by the boronate ester formation with the polyol latex surface coating. In contrast, no deposition occurs at pH 4, and previously deposited particles can be readily desorbed at this lower pH. In control experiments, conventional anionic sulfate-stabilized polystyrene latex did not deposit onto the hydrophilic cellulose surface. The distribution of boronate groups in the cellulose was determined by exposure to Alizarin Red S dye, which forms a fluorescent complex with phenylboronic acid; confocal microscopy was used to determine a surface density of 3 nm(2) per boronic acid group on the cellulose surface. Although the boronic acid binding constant with PGMA is relatively low (5.4 L/mol), the cooperative interactions between multiple PBA surface sites and the many PGMA chains per latex particle are sufficient to induce specific latex adsorption, providing a convenient new tool for controlling nanoparticle deposition on surfaces.  相似文献   

6.
Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.  相似文献   

7.
 Experimental results on the role of adsorbed polymers on the particle adhesion are presented. Both Brownian (silica particles) and non-Brownian (glass beads) particles were used. The particles were deposited onto the internal surface of a glass parallelepiped cell, and then submitted to increasing laminar flow rates. The pH and the ionic strength of the electrolytes were fixed. The adhesive force was related to the hydrodynamic force required to dislodge 50% of the initially attached beads. We found that high molecular weight PEO had little effect on the adhesion of small silica beads due to the low affinity of the polymer for silica or glass surfaces. On the contrary, PEO greatly enhanced the adhesion of bigger glass beads forced to deposit on the capillary surface because of gravity. The increase was all the more pronounced as the molecular weight of the polymer was high. The effect of high molecular weight cationic copolymers on the adhesion of silica particles was drastic. The maximal force (1500 pN) applied by the device could not enable any particle detachment even using polymers of low cationicity rate (5%), showing the efficiency of electrostatic attractions. When copolymers were adsorbed on both surfaces (particles and plane), the adhesive force exhibited a maximum at intermediate coverage of particles. This optimum was related to the optimum flocculation concentration classically observed in flocculation of suspensions by polymers. Received: 16 February 1996 Accepted: 10 September 1996  相似文献   

8.
Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reveals agglomeration of CBD adsorbed on cellulose surface. Despite an increase in surface charge owing to CBD binding to cellulose surface, force profiles are less repulsive for interactions involving, at least, one modified surface. Such changes are attributed to irregularity of the topography of protein surface and non-uniform distribution of surface charges on the surface of modified cellulose. Binding double CBD hybrid protein to cellulose surfaces causes adhesive forces at retraction, whereas separation curves obtained with cellulose modified with single CBD show small adhesion only at high ionic strength. This is possibly caused by the formation of the cross-links between cellulose surfaces in the case of double CBD.  相似文献   

9.
The peptide-mediated functionalization of inorganic particle surfaces is demonstrated on gadolinium oxide (GdO) particles, revealing specific means to functionalize nano- or microparticles. Phage display screening is exploited to select 12mer peptides, which exhibit sequence-specific adhesion onto surfaces of GdO particles. These peptide adhesion domains are exploited to effectively decorate GdO particles with fluorescently labeled poly(ethylene oxide) (PEO), proving to result in a stable surface modification as shown by significant reduction of protein adsorption by 80%, compared to nonfunctionalized particles. Peptide adhesion and stability of the noncovalent coating are investigated by adsorption/elution experiments and Langmuir isotherms. Fluorescence microscopy, contact angle, and energy dispersive X-ray (EDX) measurements confirmed the sequence specificity of the interactions by comparing adhesion sequences with scrambled peptide sequences. Noncovalent, but specific modification of inorganic particle surfaces represents a generic strategy to modulate functionality and function of nano- or microparticle surfaces.  相似文献   

10.
We prepared thermoplastic composite panels using solution impregnation of continuous lyocell (regenerated cellulose) fibers with a cellulose mixed-ester (cellulose acetate butyrate) matrix. We examined both fiber-matrix adhesion and melt consolidation in an effort to produce uniform panels having low void content and high mechanical strength. We characterized the effect of surface modification by acetylation on interfacial adhesion between the cellulose fiber and cellulose ester. Whereas wood fiber acetylation had previously been observed to result in significant strength gains in (discontinuous) wood fiber- reinforced composites (with the same matrix material), we did not observe a similar increase in strength in the continuous lyocell cellulose fiber system. This suggests that interfacial stress transfer is not a limitation in this system. This was confirmed by microscopic examination of the fracture surfaces, which indicated that fiber-matrix adhesion was considerable in the absence of fiber surface modification. We then systematically varied melt consolidation conditions (temperature, pressure and time) in an attempt to define optimum consolidation parameters by using design of experiments (DOE) methodology. We measured both interlaminar shear strength (ILSS) and composite void volume. We found that a minimal void content (ca. 2.83 vol. %) occurred at moderate temperatures (200°C), low consolidation pressures (81.4kPa) and long press times (13min). This was also where we maximized the interlaminar shear strength (ILSS) at a value of 16.3MPa. This agrees with the regression model predictions. We observed the highest tensile properties at the ILSS and void-volume optimal-consolidation condition: a tensile modulus of 22GPa and tensile strength of 246MPa were obtained.  相似文献   

11.
12.
Since the computer industry enables us to generate smaller and smaller structures, silicon surface chemistry is becoming increasingly important for (bio-)analytical and biological applications. For controlling the binding of charged biomacromolecules such as DNA and proteins on modified silicon surfaces, the surface pK(a) is an important factor. Here we present a fluorescent nanoparticle adhesion assay as a novel method to determine the surface pK(a) of silicon surfaces modified with weak acids or bases. This method is based upon electrostatic interactions between the modified silicon surface and fluorescent nanoparticles with an opposite charge. Silicon slides were modified with 3-aminopropyltriethoxysilane (APTES) and were further derivatized with succinic anhydride. Layer thickness of these surfaces was determined by ellipsometry. After incubating the surfaces with an amine-reactive fluorescent dye, fluorescence microscopy revealed that the silicon surfaces were successfully modified with amine- and carboxyl-groups. Two surface pK(a) values were found for APTES surfaces by the fluorescent nanoparticle adhesion assay. The first surface pK(a) (6.55 ± 0.73) was comparable with the surface pK(a) obtained by contact angle titration (7.3 ± 0.8), and the second surface pK(a) (9.94 ± 0.19) was only found by using the fluorescent nanoparticle adhesion assay. The surface pK(a) of the carboxyl-modified surface by the fluorescent nanoparticle adhesion assay (4.37 ± 0.59) did not significantly differ from that found by contact angle titration (5.7 ± 1.4). In conclusion, we have developed a novel method to determine the surface pK(a) of modified silicon surfaces: the fluorescent nanoparticle adhesion assay. This method may provide a useful tool for designing pH-dependent electrostatic protein and particle binding/release and to design surfaces with a pH-dependent surface charge for (bio-)analytical lab-on-a-chip devices or drug delivery purposes.  相似文献   

13.
We propose a force measurement method for evaluating the binding force between microscale flat surfaces in an aqueous solution. Using force-sensing piezoresistive cantilevers with sub-nanonewton force resolution, we have directly measured binding forces between SiO2-SiO2 microcontacts, which were created by gravity-driven random collision between microfabricated SiO2 cylindrical particles and a planar SiO2 substrate in a HCl solution. First, to examine our method we measured the pH dependence of the binding force. The binding forces were 12 and 5.8 nN at pH 1.0 and 2.0, respectively. As the pH increased, the binding force decreased and became zero at pH greater than 3.0. We confirmed that the bindings were based on the van der Waals' (VDW) force at pH 2.0 or less whereas a repulsive double-layer force acted between the surfaces at pH 3.0 or more. Second, the binding forces were categorized into a friction force or an adhesion force between the particles and the substrate. In the measurement, the friction force between the particle and the substrate was measured in the case when the particle slid on the substrate. On the contrary, the adhesion force was measured when the particle came off the substrate. Whether the particle slid or came off depended on the aspect ratio of the particle. We fabricated cylindrical particles with an aspect ratio of 0.03-2.0 and distinguished the friction force from the adhesion force by changing the aspect ratio of the particles. As a result, the friction force per unit contact area between SiO2-SiO2 flat surfaces was found to be 330 pN/microm2 +/- 20% when we used particles with a low aspect ratio (<0.1), and the adhesion force per unit contact area was 90 pN/microm2 +/- 20% for particles with a high aspect ratio (>0.4). For fluidic self-assembly that utilizes microscale surface contact in a liquid, our measurement method is an effective tool for studying and developing systems.  相似文献   

14.
We perform oil coating of hydrophobic solid surfaces via aqueous media, from emulsions, and under the presence of a shear flow. The principle of such coating is based on the use of a system at the limit of aggregation to give rise to adhesion, with asymmetrical interfaces (oil droplet/water and solid surface/water) in order to favor the oil/surface adhesion in comparison to the oil/oil adhesion. This way, droplets stick to the solid substrate, whereas they are stable and homogeneously dispersed in the bulk. We have realized coatings from two systems of emulsions made of a mixture of hydroxy-terminated silicone oil and classical silicone oil and a mixture of sunflower oil and mineral oil. The kinetics of the coating is described by a Langmuir model where the adhesion between the oil particle and the surface is modeled as a first-order reaction. The resulting coatings are formed of oil droplets uniformly covering the solid surface. The coating density can vary with the nature of the experimental systems.  相似文献   

15.
Phospholipid films have been shown in a number of studies to exhibit potential as nonfouling surfaces for biomaterial applications. However, the practical application of such films has been hindered by instability in aqueous solutions and significant detachment under mild shear stresses. Methods for stabilizing lipid films have been investigated, but to date require the presence of specific functional groups or chemical modification of the lipid molecule. In contrast to these methods, we present a process for heat-stabilization of lipid films. These heat-stabilized films have been shown to be able to withstand repeated rinsing without significant detachment. Phosphatidylcholine monolayers were formed on hydrophobic self-assembled monolayers using the liposome fusion method and stabilized at 80 degrees C. The films were characterized using Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy and were shown to be defect free after repeated rinsing. Further experiments using a quartz crystal microbalance showed that the heat-stabilized lipid films were highly resistant to nonspecific protein adhesion and compared very favorably with poly(ethylene glycol)-coated surfaces under identical exposure conditions.  相似文献   

16.
Specific molecular bonds between apposing surfaces play a central role in many biological structures and functions. They display a widely varying anchoring to the cell surface, and they are subject to forces that affect their binding characteristics due to their hydrodynamic environments. Here, we examine both anchoring and shearing aspects using simplified model systems aimed at gaining insight into the formation of a 2D bond collection under stress using two different surface anchors. The highly specific streptavidin-biotin molecular bond was chosen as the model receptor-ligand pair, and grafted colloids were used as model surfaces. To explore the role of the surface anchor, we grafted biotin onto the particle surface following two different approaches: first, the grafting was performed directly on the particle amine functions; second, a 35-nm-long PEG spacer was used. Hybrid particle classes were brought into contact in a homogeneous shear (between 200 s(-)(1) and 1200 s(-)(1)) using a cone plate geometry. The bond association and dissociation kinetics were given by the time course assemblage of hybrid particles into doublets. We observed saturating kinetics profiles that we interpreted as a linkage-breakage equilibrium, which yielded the on and off rates. We found that the biotin-PEG spacer was needed in order to observe significant binding at any shear rate. We also showed that only the number of collisions per unit time, generated by the shear, affected the on rate of the binding. Neither the exerted forces nor the collision lifetime had any effect. The off rate decreased with shear, possibly because of the shortening of the force duration, which results from the increasing shear rate.  相似文献   

17.
The dynamic adhesion behavior of micrometer-scale silica particles is investigated numerically for a low Reynolds number shear flow over a planar collecting wall with randomly distributed electrostatic heterogeneity at the 10-nanometer scale. The hydrodynamic forces and torques on a particle are coupled to spatially varying colloidal interactions between the particle and wall. Contact and frictional forces are included in the force and torque balances to capture particle skipping, rolling, and arrest. These dynamic adhesion signatures are consistent with experimental results and are reminiscent of motion signatures observed in cell adhesion under flowing conditions, although for the synthetic system the particle–wall interactions are controlled by colloidal forces rather than physical bonds between cells and a functionalized surface. As the fraction of the surface (Θ) covered by the cationic patches is increased from zero, particle behavior sequentially transitions from no contact with the surface to skipping, rolling, and arrest, with the threshold patch density for adhesion (Θcrit) always greater than zero and in quantitative agreement with experimental results. The ionic strength of the flowing solution determines the extent of the electrostatic interactions and can be used to tune selectively the dynamic adhesion behavior by modulating two competing effects. The extent of electrostatic interactions in the plane of the wall, or electrostatic zone of influence, governs the importance of spatial fluctuations in the cationic patch density and thus determines if flowing particles contact the wall. The distance these interactions extend into solution normal to the wall determines the strength of the particle–wall attraction, which governs the transition from skipping and rolling to arrest. The influence of Θ, particle size, Debye length, and shear rate is quantified through the construction of adhesion regime diagrams, which delineate the regions in parameter space that give rise to different dynamic adhesion signatures and illustrate selective adhesion based on particle size or curvature. The results of this study are suggestive of novel ways to control particle–wall interactions using randomly distributed surface heterogeneity.  相似文献   

18.
The adhesion forces holding micron-sized particles to solid surfaces can be studied through the detachment forces developed by the transit of an air–liquid interface in a capillary. Two key variables affect the direction and magnitude of the capillary detachment force: (i) the thickness of the liquid film between the bubble and the capillary walls, and (ii) the effective angle of the triple phase contact between the particles and the interface. Variations in film thickness were calculated using a two-phase flow model. Film thickness was used to determine the time-variation of the capillary force during transit of the bubble. The curve for particle detachment was predicted from the calculated force. This curve proved to be non-linear and gave in situ information on the effective contact angle developing at the particle–bubble interface during detachment. This approach allowed an accurate determination of the detachment force. This theoretical approach was validated using latex particles 2 μm in diameter.  相似文献   

19.
The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.  相似文献   

20.
The first step of bacterial or viral invasion is affinity and presumably multisite binding of bioparticles to an elastic matrix like a living tissue. We have demonstrated that model bioparticles such as inclusion bodies (spheres of about 1 microm in size) Escherichia coli cells (rods 1 x 3 microm), yeast cells (8 microm spheres), and synthetic microgel particles (0.4 microm spheres) are binding via different affinity interactions (IgG antibody-protein A, sugar-lectin, and metal ion-chelate) to a macroporous hydrogel (MH) matrix bearing appropriate ligands. The elastic deformation of the MH results in the detachment of affinity bound bioparticles. The particle detachment on elastic deformation is believed to be due to multipoint attachment of the particles to affinity matrix and the disturbance of the distance between affinity ligands when the matrix is deformed. No release of affinity bound protein occurred on elastic deformation. The efficiency of the particle release by the elastic deformation depends on the density of the ligands at the particle surface as well as on the elasticity of the matrix for relatively large particles. The release of the particles occurred irrespectively of whether the deformation was caused by external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive macroporous poly-N-isopropylacrylamide hydrogel on increase in temperature).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号