首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new member of the family of garnets with fast lithium ion conduction has been found with the composition Li7La3Hf2O12. The anion arrangement corresponds to the oxygen framework in garnets, e.g., in Ca3Fe2Si3O12. Hafnium is coordinated octahedrally while the lanthanum environment can be described as a distorted cube. Lithium occupies a large number of positions with tetrahedral, trigonal planar, and metaprismatic coordination. Li7La3Hf2O12 shows a lithium bulk ion conductivity of 2.4 × 10−4 Ω−1 cm−1 at room temperature with an activation energy of 0.29 eV.  相似文献   

2.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

3.
The spectra of complex permittivity of a Ba2Mg2Fe12O22 single crystal belonging to the family of Y-type hexaferrites have been measured over a wide temperature range (10–300 K) with the aim of determining the dynamic parameters of the phonon and magnetic subsystems in the terahertz and infrared frequency ranges (3–4500 cm−1). A factor-group analysis of the vibrational modes has been performed, and the results obtained have been compared with the experimentally observed resonances. The oscillator parameters of all nineteen phonon modes of E u symmetry, which are allowed by the symmetry of the Ba2Mg2Fe12O22 crystal lattice, have been calculated. It has been found that, at temperatures below 195 and 50 K, the spectral response exhibits new absorption lines due to magnetic excitations.  相似文献   

4.
5.
The magnetic properties of the binuclear nitrosyl-iron complexes Fe2(SC3H5N2)2(NO)4 are investigated. It is demonstrated that several types of particles, such as dimers with a pair of spins 1/2, dimers with a pair of spins 5/2, and paramagnetic particles with spin 3/2, make a contribution to the magnetic properties of the complexes. A decrease in the temperature below 25 K leads to a change in the shape of the EPR spectra corresponding to these dimers, so that Lorentzian lines (homogeneous broadening) transform into Gaussian lines (inhomogeneous broadening). This is accompanied by a stepwise change in the EPR line width and g factors. The change in the line shape indicates that complexes become asymmetric at low temperatures, possibly, due to the decrease in the spin exchange frequency below the frequency of the microwave field of the spectrometer.  相似文献   

6.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

7.
The electrical conductivity σ of crystals of lithium heptagermanate Li2Ge7O15 doped with Cr and Mn is measured in an alternating-current field with a frequency of 1 kHz in the temperature range 300–700 K. It is found that doping strongly affects the electrical conductivity. It is established that the addition of 0.1 wt % Cr leads to an increase in the electrical conductivity σ by almost one order of magnitude, whereas the introduction of 0.03 wt % Mn substantially reduces the electrical conductivity along particular crystallographic directions. Data available on the incorporation of Cr and Mn impurity atoms into the lattice suggests that the electrical conductivity is determined by lithium ions hopping over interstitial positions along the structural channels.  相似文献   

8.
The dielectric nonlinearity in BaBi2Nb2O9 and SrBi2Ta2O9 layered ceramics was studied by measuring their polarization loops and reverse dependences of permittivity. It was shown that the features of the dielectric response of BaBi2Nb2O9 and SrBi2Ta2O9 in strong fields can be explained by glass-like properties and the contribution of the domain structure of the ferroelectric material to repolarization processes, respectively.  相似文献   

9.
The Li2BaP2O7 compound has been obtained by the conventional solid-state reaction and characterized by X-ray powder diffraction. The title material crystallizes in the monoclinic system with C2/c space group. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 589–724 K. Temperature dependence of the DC conductivity and modulus was found to obey the Arrhenius law. The obtained values of activation energy are different which confirms that transport in the titled compound is not due to a simple hopping mechanism. AC conductivity measured follows the power-law dependence σ AC?~?ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process.  相似文献   

10.
The concentration and temperature dependences of the thermopower of composites containing Co nanoparticles embedded in the Al2O n dielectric matrix are investigated. Below the percolation threshold, i.e., in the tunneling conduction region, the absolute values of the thermopower of the composites under investigation are less than those above the percolation threshold. It is revealed that, in the tunneling conduction region, the slope of the temperature dependences of the thermopower changes at a temperature of ~205 K. This can indicate that the thermopower is sensitive to a change in the mechanism of conduction from the Mott law ln(σ) ∝ (1/T)1/4 to a power relation that corresponds to the model of inelastic resonant tunneling through a chain of localized states in the dielectric matrix. The introduction of oxygen in the course of sputtering brings about a decrease in the absolute values of the thermopower; however, the character of variation in the concentration and temperature dependences of the thermopower remains unchanged.  相似文献   

11.
Comprehensive NMR investigation of low-frequency spin dynamics of LiCu2O2 (LCO) and NaCu2O2 (NCO) low-dimensional helical magnets in the paramagnetic state has been carried out for the first time. Temperature dependences of the spin–lattice relaxation rate and anisotropy on various LCO/NCO nuclei have been determined at various orientations of single crystals in an external magnetic field. The spatial asymmetry of spin fluctuations in LCO multiferroic has been discovered. The quantitative analysis of the anisotropy of spin–lattice relaxation in LCO/NCO has allowed estimating the contributions of individual neighboring Cu2+ ions to the transferred hyperfine field on Li+(Na+) ions.  相似文献   

12.
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5).  相似文献   

13.
Weak-ferromagnetic (or antiferromagnetic) resonance of Cu and electron spin resonance (ESR) of Gd are observed both in insulating GdSr2Cu2NbO8 and in superconducting GdSr2Cu2RuO8. The Cu resonance implies that the CuO2 planes are magnetic and indicates that the superconducting layer of GdSr2Cu2RuO8 is SrO (not CuO2), as in its related superconducting compound without cuprate planes, doped Sr2YRuO6.  相似文献   

14.
Oxide compounds Pr2Sn2O7 and Nd2Sn2O7 have been obtained by solid-phase synthesis. The effect of temperature on the heat capacity of Pr2Sn2O7 (360–1045 K) and Nd2Sn2O7 (360–1030 K) has been studied using differential scanning calorimetry. The thermodynamic properties of the compounds (changes in enthalpy, entropy, and the reduced Gibbs energy) have been calculated by the experimental data of Cp = f(T).  相似文献   

15.
Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV) and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams.  相似文献   

16.
Single crystals of Pb2Fe2Ge2O9 have been grown. They were subjected to X-ray diffraction, magnetic, neutron diffraction, Mössbauer and spin resonance studies. It has been established that Pb2Fe2Ge2O9 is a weak ferromagnet with a Néel temperature T N = 46 K, and the exchange and spin-flop transition fields have been estimated. It has been demonstrated that the weak ferromagnetic moment is actually the result of the single-ion anisotropy axes for the magnetic moments of different magnetic sublattices being not collinear.  相似文献   

17.
This paper reports on the results of the ab initio FLAPW-GGA band structure calculations for two new layered phases SrRu2As2 and BaRu2As2, which are isostructural and isoelectronic to the known tetragonal (Ca,Sr,Ba)Fe2As2 basis phases of the FeAs superconductor family. The energy bands, densities of states, topology of the Fermi surface, low-temperature electron specific heats, and molar Pauli paramagnetic susceptibilities of SrRu2As2 and BaRu2As2 are determined for the first time and discussed in comparison with those for BaFe2As2 and BaRh2As2.  相似文献   

18.
Superconductivity was achieved in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The X-ray diffraction measurement shows that this material has a layered structure with the space group of P4/nmm, and with the lattice constants a = b = 3.9003 Å and c = 15.8376 Å. Clear diamagnetic signals in ac susceptibility data and zero-resistance in resistivity data were detected at about 6 K, confirming the occurrence of bulk superconductivity. Meanwhile we observed a superconducting transition in the resistive data with the onset transition temperature at 29.2 K, which may be induced by the nonuniform distribution of the Cr/Ti content in the FeAs-42622 phase.  相似文献   

19.
Spin-wave resonances have been observed in superlattices arising due to the phase separation and self-organization of charge carriers in Eu0.8Ce0.2Mn2O5 single crystals. The resonances are found within the 5–80 K temperature range at frequencies close to 30 GHz. Similar resonances with intensities about an order of magnitude lower are also observed in EuMn2O5. The latter suggests the existence of charge transfer processes between the manganese ions of different valences in EuMn2O5.  相似文献   

20.
The results of ab initio FLAPW-GGA computations of the band structure of two new layered low-temperature superconductors BaRh2P2 and BaIr2P2 (with a ThCr2Si2 tetragonal structure) are presented. As distinct from the family of the isostructural FeAs superconductors, they feature the complete replacement of the magnetic (Fe) metal by the nonmagnetic 4d (Rh) and 5d (Ir) metals. For BaRh2P2 and BaIr2P2, the energy bands, the distributions of the densities of electronic states, the Fermi surface topology, and the coefficients of the low-temperature electron specific heat and the molar Pauli paramagnetic susceptibility have been determined. An increase in T C in the BaRh2P2 (1 K) → BaIr2P2 (2.1 K) transition can assumingly be attributed to the features of their phonon subsystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号