首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Righetti PG  Verzola B 《Electrophoresis》2001,22(12):2359-2374
A series of techniques for monitoring protein folding/unfolding/misfolding equilibria are here assessed and compared with capillary zone electrophoresis (CZE). They include spectroscopic techniques, such as circular dichroism, intrinsic fluorescence, nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy, small-angle X-ray scattering, as well as techniques based on biological assays, such as limited proteolysis and immunochemical analysis of different conformational states. Some unusual probes, such as mass spectrometry for probing unfolding transitions, are also discussed. Size-exclusion chromatography is also evaluated in view of the fact that this technique, like all electrophoretic techniques, and unlike spectroscopic probes, which can only see an average signal in mixed populations, can indeed physically separate folded vs. unfolded macromolecules, especially in the case of slow equilibria. Particular emphasis is devoted to electrophoretic techniques, such as gel-slab electrophoresis in transverse urea or thermal gradients, and CZE. In the latter case, a number of applications are shown, demonstrating the excellent correlation of CZE with more traditional probes, such as intrinsic fluorescence monitoring. It is additionally shown that CZE can be used for measuring the deltaG degrees of unfolding over the pH scale, in good agreement with theoretical calculations on the electrostatic free energy of folding vs. pH, as calculated with a linearized Poisson-Boltzmann equation. Finally, it is demonstrated that CZE can probe also aggregate formation in the presence of helix-inducing agents, such as trifluorethanol.  相似文献   

2.
The coil/helix transition of a synthetic, branched-chain polymeric polypeptide (poly (Lys(Glu(1)-DL-Ala(3))EAK), 50-Lys residues long in the backbone, as a function of increasing molarities of methanol in solution, is here studied by both, circular dichroism (CD) and capillary zone electrophoresis. CD spectra showed that, at 75% v/v methanol, the transition from random coil to fully helical structure was obtained, in a pH 1.1 HCI solution in the presence of 20 mM NaCI. CZE studies, run in parallel, exhibited the classical unfolding to folding sigmoidal transition, with mid-point at 60% v/v methanol concentration, plateauing at ca. 80% v/v organic solvent. Surprisingly, though, such unfolding to folding transition was accompanied by an expansion, rather than a contraction, of the resulting ordered polypeptide. As the charge of the polypeptide (a pure polycation at a pH of 2.1 in CZE) was kept rigorously constant, a plot of the radius of the polymer along the sigmoidal transition clearly showed that the radius of gyration of the helical, structured polypeptide was in fact larger than that of the random coil. Such results were confirmed by molecular dynamics simulations, which indicated that the dimensions of such polypeptide, in alpha-helix configuration, were 8.5 nm (in length) and 3.2 nm (in diameter), whereas those of the corresponding random coil were 7.2 nm (in length) and 5.1 nm (length of shorter axis). It would thus appear that the randomized structure assumes the shape of a more compact object, roughly resembling a "rugby ball".  相似文献   

3.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

4.
The thermal denaturation process of a model protein, bovine beta-lactoglobulin, was analyzed using capillary zone electrophoresis (CZE). For this purpose, a commercial CE apparatus was improved, allowing efficient control and accurate measurement of the temperature up to 95 degrees C. Under various pH conditions, transition temperature (Tm), enthalpy change (delta H) and entropy change (delta S) associated with the thermal denaturation were determined. Moreover, the technique is unique in its ability to estimate the heat capacity change (delta Cp). This work shows that CZE, performed even when electroosmotic flow occurs, is an innovative approach for determining the stability curves of proteins. Accordingly, CZE is a powerful tool to study protein unfolding/folding quickly and with minimal sample requirements.  相似文献   

5.
脲和盐酸胍诱导溶菌酶去折叠的荧光相图法研究   总被引:13,自引:0,他引:13  
杨芳  梁毅  杨芳 《化学学报》2003,61(6):803-807
用荧光相图法分别研究了脲和盐酸胍诱导卵清溶菌酶去抓叠的过程。当变性体 系中无还原剂2-巯基乙醇存在、脲浓度从0变化至4.0 mol/L(或盐酸胍浓度从0变 化至3.0 mol/L)时,溶菌酶从天然态转变为部分折叠中间态,当脲浓度从4.0 mol/L变化至8.0 mol/L(或盐酸胍浓度从3.0 mol/L变化至6.0 mol/L)时,溶菌 酶从中间态转变为去折叠态,此时该蛋白的变性过程符合“三态模型”。而当变性 体系中有该还原剂存在时,溶菌酶则由天然态直接转变为去折叠态,此时脲诱导该 蛋白去折叠的过程符合曲型的“二态模型”。实难结果表明荧光相图法可以检测蛋 白南去抓叠的中间态。  相似文献   

6.
Temperature-gradient gel electrophoresis (TGGE) has been used to study the thermal unfolding of ferricytochrome c in low and high concentrations of acetic acid. It has been observed that the mobility of cytochrome c is a linear function of temperature when the system is characterized by a homogeneous population of conformation-state, single molecular species. Within the transition temperature range, the mobility clearly displays the characteristic sigmoidal shape describing the transitions of protein unfolding. The data obtained by TGGE were used to estimate the apparent thermodynamic parameters (enthalpy change deltaHvh and transition temperature Tm), associated with the transition of unfolding. The accuracy of the apparent thermodynamic parameters obtained by this method agrees within error limits with the values obtained by direct calorimetric measurements using differential scanning calorimetry (DSC).  相似文献   

7.
The F61A/A90G mutant of a redesigned form of apocytochrome b562 folds by an apparent two-state mechanism. We have used the pressure dependence of 15N NMR relaxation dispersion rate profiles to study the changes in volumetric parameters that accompany the folding reaction of this protein at 45 degrees C. The experiments were performed under conditions where the folding/unfolding equilibrium could be studied at each pressure without addition of denaturants. The exquisite sensitivity of the methodology to small changes in folding/unfolding rates facilitated the use of relatively low-pressure values (between 1 and 270 bar) so that pressure-induced changes to the unfolded state ensemble could be minimized. A volume change for unfolding of -81 mL/mol is measured (at 1 bar), a factor of 1.4 larger (in absolute value) than the volume difference between the transition state ensemble (TSE) and the unfolded state. Notably, the changes in the free energy difference between folded and unfolded states and in the activation free energy for folding were not linear with pressure. Thus, the difference in the isothermal compressibility upon unfolding (-0.11 mL mol(-1) bar(-1)) and, for the first time, the compressibility of the TSE relative to the unfolded state (0.15 mL mol(-1) bar(-1)) could be calculated. The results argue for a TSE that is collapsed but loosely packed relative to the folded state and significantly hydrated, suggesting that the release of water occurs after the rate-limiting step in protein folding. The notion of a collapsed and hydrated TSE is consistent with expectations based on earlier temperature-dependent folding studies, showing that the barrier to folding at 45 degrees C is entropic (Choy, W. Y.; Zhou, Z.; Bai, Y.; Kay, L. E. J. Am. Chem. Soc. 2005, 127, 5066-5072).  相似文献   

8.
The folding/unfolding transitions of a series of designed consensus tetratricopeptide repeat proteins are quantitatively described by the classical one-dimensional Ising model, which thus represents a new folding paradigm for repeat proteins. Moreover, for the first time for any protein, a theoretical model predicts the folding/unfolding transition midpoint and the width of the transition.  相似文献   

9.
小分子热休克蛋白Mj HSP16.5的分级变性   总被引:3,自引:0,他引:3  
应用荧光光谱、圆二色光谱、体积排阻色谱、激光动态光散射等技术, 研究了来自嗜热古细菌Methanococcus jannaschii (Mj)的小分子热休克蛋白Mj HSP16.5在变性剂作用下的变性过程. 研究表明, 在pH 7时, Mj HSP16.5在8 mol·L-1尿素作用下不会发生变性. 在pH 7条件下, 盐酸胍对Mj HSP16.5的变性表现为一个分级过程,分别在2.0、3.0和6.0 mol·L-1盐酸胍浓度附近,出现明显的结构变化; 到7.0 mol·L-1盐酸胍时, Mj HSP16.5才完全变性. 降低溶液pH值将使Mj HSP16.5的变性变得更为容易.  相似文献   

10.
Zhao X  Mai Z  Dai Z  Zou X 《Talanta》2011,84(1):148-154
An efficient way was proposed for probing the folding/unfolding event of bovine hemoglobin (Hb) through adsorptive-transfer voltammetry. Hb molecules in native and pre-unfolded in different urea conditions for 23 h were adsorbed onto the montmorillonite clay modified glassy carbon electrode (Hb/clay/GCE and uHb/clay/GCE, respectively). Cyclic voltammograms of Hb/clay/GCE and uHb/clay/GCE showed that the unfolding of Hb caused great change in the direct electron transfer between the heme irons within Hb and electrode surface, which was facilitated on clay film. From the amount of the electroactive Hb (WHbe) and the adsorbed Hb (Γ) on clay per unit mass, the minimal electroactive portion (MEP) of the adsorbed Hb was calculated to assess the unfolding state of Hb. With the increase of urea concentration, MEP showed a sigmoid curve. Thermodynamic parameters related to the unfolding event of Hb were also obtained based on the linear free energy model (LEM), including the free energy of folding in water (ΔGUwater), the slope of the Santoro-Bolen equation (m), and the urea concentration required in for achieving half of the total change (Sm) in the unfolding curves. This work gave the first try for investigating protein unfolding at nano-materials modified electrode using adsorptive-transfer voltammetry, which improved the sensitivity of analysis and avoided the disadvantages involved in the existing electrochemical methods for protein unfolding. The proposed method will benefit the electrochemical studies of protein.  相似文献   

11.
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the α+β class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1 M GuHCl), streblin exists in a partially unfolded state with characteristics of a molten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.  相似文献   

12.
The unfolding of α-chymotrypsinogen covalently immobilized on silica beads has been studied by differential scanning calorimetry (DSC). The enzyme undergoes an unfolding transition which, unlike the free protein, cannot be approximated by a single two-state process. After immobilization, the unfolding is characterized by the presence of two partially overlapping transitions, both of them show two-state behavior. The two processes correspond to the separate unfolding of the two domains of the α-chymotrypsinogen molecule. The loss of cooperativity behavior is a consequence of the covalent immobilization. The two domains showed different thermal stability as functions of pH. One of them unfolded with a transition temperature T m2 higher than T m of the free enzyme, implying stabilization effect of immobilization. However, below pH 4.5, its native structure is lost. The other transition shows a remarkable pH-independent thermal stability from pH 2.5 to 7.0. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A fundamental question relating to protein folding/unfolding is the time evolution of the folding of a protein into its precisely defined native structure. The proper identification of transition conformations is essential for accurately describing the dynamic protein folding/unfolding pathways. Owing to the rapid transitions and sub-nm conformation differences involved, the acquisition of the transient conformations and dynamics of proteins is difficult due to limited instrumental resolution. Using the electrochemical confinement effect of a solid-state nanopore, we were able to snapshot the transient conformations and trace the multiple transition pathways of a single peptide inside a nanopore. By combining the results with a Markov chain model, this new single-molecule technique is applied to clarify the transition pathways of the β-hairpin peptide, which shows nonequilibrium fluctuations among several blockage current stages. This method enables the high-throughput investigation of transition pathways experimentally to access previously obscure peptide dynamics, which is significant for understanding the folding/unfolding mechanisms and misfolding of peptides or proteins.

A solid-state nanopore based method is described for resolving protein-folding-related problems via snapshotting the folding intermediates and characterizing the kinetics of a single peptide.  相似文献   

14.
脲和盐酸胍诱导过氧化氢酶去折叠的研究   总被引:4,自引:1,他引:4  
焦铭  梁毅  李洪涛  王曦 《化学学报》2003,61(9):1362-1368
用荧光相图法分别研究了脲和盐酸胍诱导牛肝过氧化氢酶去折叠的过程。当脲 浓度从0依次增大至0.50,4.5和8.0 mol/L时,过氧化氢酶从天然四聚体依次转变 为蓬松的四聚体、部分折叠的无活性二聚体和去折叠态,而当盐酸胍浓度从0依次 变化至0.65,2.5和6.0 mol/L时,过氧化氢酶则从天然四聚体集资转变为部分折叠 的激活二聚体、部分折叠的单体和去折叠态,这表明无论是用脲还是用盐酸胍作为 变性剂,该蛋白的变性过程都符合“四态模型”,但这两种变性剂诱导该蛋白去折 叠的途径和机制有较大差异。实验结果表明荧光相图法可以检测蛋白质去折叠的中 间态。用等温滴定量去热法研究了盐酸胍诱导过氧化氢酶去折叠过程的热力学, 25.0 ℃时低浓度盐酸胍诱导该蛋白从天然四聚体转变为部分折叠的激活二聚体的 本征摩尔构象变化焓、Gibbs自由能和熵分别为-69.2 kJ·mol~(-1),6.43 kJ· mol~(-1)和-254 J·K~(-1)·mol~(-1),据此推断盐酸胍通过熵效应和静电效应来 稳定和激活该二聚体。  相似文献   

15.
Despite the daily use of urea to influence protein folding and stability, the molecular mechanism with which urea acts is still not well understood. Here the use of combined parallel tempering and metadynamics simulation allows us to study the free-energy landscape associated with the folding/unfolding of β-hairpin GB1 equilibrium in 8 M urea and pure water. The nature of the unfolded state in both solutions has been analyzed: in urea solution the addition of denaturants acts to expand the denatured state, while in pure water solution the unfolded state is noticeably more compact. For what concerns the mechanism by which urea acts as a denaturant, a preferential direct interaction between urea molecules and protein backbone has been found. However, the bias toward urea solvation is largest at intermediate values of the gyration radius.  相似文献   

16.
The first part of this paper contains an overview of protein structures, their spontaneous formation ("folding"), and the thermodynamic and kinetic aspects of this phenomenon, as revealed by in vitro experiments. It is stressed that universal features of folding are observed near the point of thermodynamic equilibrium between the native and denatured states of the protein. Here the "two-state" ("denatured state" <--> "native state") transition proceeds without accumulation of metastable intermediates, but includes only the unstable "transition state". This state, which is the most unstable in the folding pathway, and its structured core (a "nucleus") are distinguished by their essential influence on the folding/unfolding kinetics. In the second part of the paper, a theory of protein folding rates and related phenomena is presented. First, it is shown that the protein size determines the range of a protein's folding rates in the vicinity of the point of thermodynamic equilibrium between the native and denatured states of the protein. Then, we present methods for calculating folding and unfolding rates of globular proteins from their sizes, stabilities and either 3D structures or amino acid sequences. Finally, we show that the same theory outlines the location of the protein folding nucleus (i.e., the structured part of the transition state) in reasonable agreement with experimental data.  相似文献   

17.
The change trend of the local environment of Cys34 domain in bovine serum albumin has been studied as a function of pH value by using thiol-specific and polarity-sensitive fluorescent probe 3-(4-chloro-6-p-maleimidylphenoxyl-1,3,5-triazinylamino)-7-dimethylamino-2-methyl-phenazine. The local polarity of the Cys34 domain is found to rise with the increase of pH values, and the corresponding dielectric constant is raised from 12.8 at pH 6.0 to 23.3 at pH 9.1. The result shows that the environment of the Cys34 domain is rather hydrophobic in normal state at pH 6.0 and becomes a little hydrophilic in the course of N→B transition, which may be attributed to the slight unfolding of the protein and thus the increasing of exposure of the previously relatively buried Cys34. In addition, the increased dielectric constant (23.3) is much lower than that (80.1) of water, suggesting that the unfolding of bovine serum albumin does not cause the full exposure of the Cys34 to the aqueous media during the transition.  相似文献   

18.
We demonstrate that Tryptophan (Trp) and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide (BODIPY) is a suitable donor-acceptor (D-A) pair for intraprotein distance measurements, applicable to the study of protein folding. The suitability of the Trp-BODIPY electronic energy transfer is exemplified on the extensively-characterised two-state protein, S6, from Thermus thermophilus. This protein has proved to be useful for the elucidation of folding cooperativity and nucleation, as well as the changes upon induction of structural transitions. For a comprehensive structural coverage, BODIPY molecules were anchored by Cys insertions at four different positions on the S6 surface. Trp residues at position 33 or 62 acted as donors of electronic energy to the BODIPY groups. None of the D-A pairs show any detectable difference in the folding kinetics (or protein stability), which supports the notion that the two-state transition of S6 is a highly concerted process. Similar results are obtained for mutants affecting the N- and C-terminus. The kinetic analyses indicate that changes of the transition state occur through local unfolding of the native state, rather than by a decrease of the folding cooperativity. The distances obtained from the analysis of the time-resolved fluorescence experiments in the native state were compared to those calculated from X-ray structure. As an additional measure, molecular dynamics simulations of the different protein constructs were performed to account for variability in the BODIPY location on the protein surface. The agreement between fluorescence and X-ray data is quite convincing, and shows that energy transfer measurements between Trp and BODIPY can probe distances between ca. 17 to 34 A, with an error better than 10%.  相似文献   

19.
Opsin is the unstable apo‐protein of the light‐activated G protein‐coupled receptor rhodopsin. We investigated the stability of bovine opsin, solubilized in 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)/detergent bicelles, against urea‐induced unfolding. A single irreversible protein unfolding transition was observed from changes in intrinsic tryptophan fluorescence and far‐UV circular dichroism. This unfolding transition correlated with loss of protein activity. Changes in tertiary structure, as indicated by fluorescence measurements, were concomitant with an approximate 50% reduction in α‐helical content of opsin, indicating that global unfolding had been induced by urea. The urea concentration at the midpoint of unfolding was dependent on the lipid/detergent environment, occurring at approximately 1.2 m urea in DMPC/1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine bicelles, while being significantly stabilized to approximately 3.5 m urea in DMPC/3‐[(cholamidopropyl)dimethylammonio]‐1‐propanesulfonate bicelles. These findings demonstrate that interactions with the surrounding lipids and detergent are highly influential in the unfolding of membrane protein structure. The urea/bicelle system offers the possibility for a more detailed understanding of the structural changes that take place upon irreversible unfolding of opsin.  相似文献   

20.
Non-native conformations of proteins were generated by temporary contact with aqueous solutions of sodium dodecyl sulfate (SDS) and separated from the native state with capillary zone electrophoresis (CZE) in alkaline borate buffer deficient of SDS. Nine proteins at concentrations of 2.0 or 3.0 mg.L(-1) were compared in terms of their susceptibility to SDS. For superoxide dismutase and ferritin the tendency of unfolding was modest with < 25% of the protein being transformed to the non-native state at 10 mmol.L(-1) SDS. Highest susceptibility was observed for albumin, myoglobin (Mb), and hemoglobin with > 75% in the non-native state even at 2.0 mmol.L(-1) SDS. The influence of varying SDS concentrations on the conformational state of Mb was tested. Increasing the SDS concentration, circular dichroism revealed a reduction in alpha-helix, an increase in random coil, and an introduction of beta-sheet, which is absent in native structure. Modifications in the secondary structure were in agreement with distinct changes in the shape of the non-native Mb peak in CZE and make a gradual unfolding/refolding process with several coexisting molten globules instead of two-state transition of conformations most plausible for Mb. CZE was found to contribute to a further understanding of holo-Mb transformation towards a population of non-native conformations (i) by means of calculated peak area ratios of native to non-native states, which showed sigmoid transition, (ii) by detecting the release of the prosthetic heme group, and (iii) by changes in the effective electrophoretic mobility of the Mb-SDS peaks. Reconstituted holo-Mb forms differed in the Soret band around 410 nm, indicating diversity in the conformation of the heme pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号