首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
New NMR broadband inversion pulses that compensate both for resonance offset and radiofrequency (RF) inhomogeneity are described. The approach described is a straightforward computer optimization of an initial digitized waveform generated from either a constant-amplitude frequency sweep or from an existing composite inversion pulse. Problems with convergence to local minima are alleviated by the way the optimization is carried out. For a given duration and maximum allowable RF field strength B1 (but not necessarily given RMS power deposition), the resultant broadband inversion pulse (BIP) shows superior inversion compared to inversion pulses obtained from previous methods, including adiabatic inversion pulses. Any existing BIP can be systematically elaborated to build up longer inversion pulses that perform over larger and larger bandwidths. The resulting pulse need not be adiabatic throughout its duration or across the entire operational bandwidth.  相似文献   

2.
Rectification in bipotential scattering of a beam of atoms in the field of short pulses of traveling and standing waves is studied: As a result of the coherence induced by the traveling-wave pulse, the momentum transferred to the atomic beam during scattering by the standing wave is nonzero. The magnitude and sign of the asymmetry in the scattering amplitude are oscillatory functions of the duration of the traveling-wave pulse and the detuning of the frequency of the field from atomic resonance. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 12, 920–923 (25 June 1996)  相似文献   

3.
薛艳  王刚  吴金辉  张冰  高锦岳 《中国物理 B》2011,20(3):33403-033403
In a four-level system of ultracold 87Rb atoms, through analytical and numerical calculations we propose an efficient scheme to achieve the enhanced four-wave mixing process and demonstrate its dynamical control by various parameters such as the travel distance z, probe detuning $\delta$ and the probe pulse width $\tau$. In particular, we find that the maximal intensity of the nonlinearly generated signal pulse can be about 80% of the initial input probe under the optimal condition. This greatly enhanced conversion efficiency occurs due to the constructive quantum interference between two different components of the generated signal pulse.  相似文献   

4.
An investigation of the probability of hydrogen atom ionization by ultra‐short electromagnetic pulses is carried out in the frame of perturbation theory We consider the case when the electric field strength amplitude E0 in a pulse by two orders lower than characteristic atomic field strength Ea (Ea ? 5.1 · 109 V/cm). A detailed investigation of the dependence of the probabilities on the pulse duration was performed for Gaussian pulse shapes. In the case where the carrier frequency of the Gaussian pulse is larger than the atomic ionization potential, the probability goes to the standard limit of perturbation per unit time. At the same pulse durations, the probabilities for carrier frequencies less than the ionization potential go to zero. The frequency dependence of the ionization probability becomes equal to the standard threshold dependence with increasing pulse duration time. A comparison between the ionization effects caused by wavelet pulses without carrier frequency and Gaussian pulses with carrier frequency shows that the same ionization probability values are achieved when the pulse carrier frequency is detuned by about 20% from the ionization threshold. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We demonstrate the production of an electric field inside a high temperature cesium vapor cell with external electrodes. This external control of the electric field, which is not possible with a glass cell in presence of a cesium vapor, is achieved using a cell made of sapphire, and is of particular interest for our ongoing Parity Violation experiment. We describe the main components and the implementation on the set-up, including the pulsed high voltage generator. With pulse duration not exceeding 200 ns the system provides a reversible longitudinal E-field of up to 2 kV/cm in the vapor at a density of ∼ 2×1014 at/cm3 without discharge. Atomic signals attest the application of the electric field in the cell, with the predicted value. Further improvements obtained with sapphire cells are also presented. Received 15 September 2000  相似文献   

6.
A 3.7 GHz system, which is meant for LHCD experiments on ADITYA tokamak, is used for producing ECR discharge. The ECR discharge is produced by setting the appropriate resonance magnetic field of 0.13 T, with hydrogen at a fill pressure of about 5 × 10−5 Torr. The RF power, up to 10 kW (of which ∼50% is reflected back), with a typical pulse length of 50 ms, is injected into the vacuum chamber of the ADITYA tokamak by a LHCD grill antenna and is used for plasma formation. The average coupled RF power density (the RF power/a typical volume of the plasma) is estimated to be ∼5 kW/m3. When the ECR appears inside the tokamak chamber for the given pumping frequency (f = 3.7 GHz) a plasma with a density (n e) ∼ 4 × 1016 m−3 and electron temperature ∼8 eV is produced. The density and temperature during the RF pulse are measured by sets of Langmuir probes, located toroidally, on either side of the antenna. Hα signals are also monitored to detect ionization. An estimate of density and temperature based on simple theoretical calculation agrees well with our experimental measurements. The plasma produced by the above mechanism is further used to characterize the ECR-assisted low voltage Ohmic start-up discharges. During this part of the experiments, Ohmic plasma is formed using capacitor banks. The plasma loop voltage is gradually decreased, till the discharge ceases to form. The same is repeated in the presence of ECR-formed plasma (RF pre-ionization), formed 10 ms prior to the loop voltage. We have observed that (with LHCD-induced) ECR-assisted Ohmic start-up discharges is reliably and repeatedly obtained with reduced loop voltage requirement and breakdown time decreases substantially. The current ramp-up rates also decrease with reduced loop voltage operation. These studies established that ECR plasma formed with LHCD system exhibits similar characteristics as reported earlier by dedicated ECR systems. This experiment also addresses the issue of whether ECR plasma formed with grill antenna exhibits similar behavior as that formed by single waveguide ECR antenna. Our experimental observations suggest that the characteristics of (LHCD system-induced) ECR-assisted Ohmic start-up discharges show similar properties, reported earlier with normal ECR-assisted Ohmic start-up discharges and hence LHCD system may be used as ECR system at reduced toroidal magnetic field for other applications like wall conditioning.   相似文献   

7.
闫研  李淑静  田龙  王海 《物理学报》2016,65(1):14205-014205
利用电磁感应透明(EIT)效应在87Rb热原子气室中进行了慢光和光存储的实验研究,在单光子红失谐650 MHz处测量了双光子失谐对光脉冲延迟和光存储的影响.结果表明:在双光子失谐0—0.5 MHz范围内存在显著的光脉冲延迟和光存储恢复信号,其慢光波形与理论计算结果基本相符;而恢复光脉冲信号随着双光子失谐的变化出现形变,这是由于多个EIT子系统之间的干涉引起的.这一研究结果为连续变量光场在热原子系综中的存储提供了实验参考.  相似文献   

8.
Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in the presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion along it. In this paper, we describe a method by which optimized modulation functions can be constructed to render insensitivity toB1inhomogeneity over a predeterminedB1range and over a wide band of frequencies. This is accomplished by requiring that the optimized pulse fulfill the adiabatic condition over this range ofB1inhomogeneity and over the desired frequency band for the complete duration of the pulse. A trajectory similar to the well-known sech/tanh adiabatic pulse, i.e., a half-ellipse, is used. The optimization process improves the slice profile by optimizing the rate of motion along this trajectory. The optimized pulse can be tailored to the specific design requirements; in particular, the transition sharpness may be traded off against the inverted bandwidth. Two design examples, including experimental results, demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse: in the first example, a large frequency band is to be inverted using a weak RF amplitude in a short time. In the second example, a pulse with a very sharp transition is required.  相似文献   

9.
《Magnetic resonance imaging》1996,14(9):1073-1078
17O-decoupled proton MR spectroscopy and imaging with a double-tuned radiofrequency (RF) coil at 2 T was used to detect and quantify H2 17O in tissue phantoms containing various concentrations of 17O-enriched water in 5% gelatin. The pulse sequence used in these experiments consisted of a conventional proton spinecho sequence with RF irradiation at the 17O resonance frequency applied between the proton 90° pulse and the signal acquisition window. The double-tuned coil provided several advantages over systems using separate RF coils for 17O decoupling and proton excitation/detection, including ensuring that the same (or similar) sample volumes are excited and decoupled and permitting accurate calibration of the 17O decoupling pulse amplitude. The efficiency of 17O decoupling as a function of decoupling RF amplitude, decoupling duration, and decoupling resonance offset was investigated. Finally, the specific absorption rate of the 17O decoupled pulse sequence was investigated and found to lie within federal guidelines at 1.5 T.  相似文献   

10.
<正>We theoretically investigate the high-order harmonic generation from stretched molecules in a linearly polarized intense field.By adopting an infrared pulse combined with an ultraviolet(UV) attosecond pulse,the ionization process can be controlled effectively.In this excitation scheme,the harmonic spectrum beyond I_p+3.17U_P is significantly enhanced by two orders,where I_p and U_p=e~2E_0~2/(4m_eω~2) are the ionization and ponderomotive potential,then smooth broadband supercontinuum with the bandwidth of about 120 eV is obtained,which leads to an isolated sub-60- as attosecond pulse with a high signal-noise ratio.Moreover,the bandwidth of the supercontinuum is weakly dependent on the location and pulse duration of the UV pulse.  相似文献   

11.
Over the past decade several pulsed field gradient stimulated-echo methods have been presented for diffusion measurements in heterogeneous media. These methods have reduced or eliminated the coupling between the applied magnetic field gradient and a constant internal magnetic field gradient caused by susceptibility changes throughout the sample. For many research purposes thez-storage delay between the second and third π/2 RF pulse has been included in order to increase the decay of the echo attenuation to an appropriate level and to increase the signal-to-noise ratio by avoidingT2relaxation of the magnetization in parts of the pulse sequence. For these reasons a stimulated-echo method has been applied instead of a spin-echo method. When studying systems where it is necessary to keep the duration of the pulse sequence at a minimum, and one is not dependent on usingz-storage time to increase the echo attenuation or to study diffusion as a function of observation time, a spin-echo method should be chosen. Here we propose a bipolar pulsed field gradient spin-echo method which is well suited to this purpose, and preliminary diffusion measurements are presented as illustration.  相似文献   

12.
We present an open volume, high isolation, RF system suitable for pulsed NMR and EPR spectrometers with reduced dead time. It comprises a set of three RF surface coils disposed with mutually parallel RF fields and a double-channel receiver (RX). Theoretical and experimental results obtained with a prototype operating at about 100 MHz are reported. Each surface RF coil (diameter 5.5 cm) was tuned to f0 = 100.00 ± 0.01 MHz when isolated. Because of the mutual coupling and the geometry of the RF coils, only two resonances at f1 = 97.94 MHz and f2 = 101.85 MHz were observed. We show they are associated with two different RF field spatial distributions. In continuous mode (CW) operation the isolation between the TX coil and one of the RX coils (single-channel) was about −10 dB. By setting the double-channel RF assembly in subtraction mode the isolation values at f1 or f2 could be optimised to about −75 dB. Following a TX RF pulse (5 μs duration) an exponential decay with time constant of about 600 ns was observed. The isolation with single-channel RX coil was about −11 dB and it increased to about −47 dB with the double-channel RX in subtraction mode. Similar results were obtained with the RF pulse frequency selected to f2 and also with shorter (500 ns) RF pulses. The above geometrical parameters and operating frequency of the RF assembly were selected as a model for potential applications in solid state NMR and in free radical EPR spectroscopy and imaging.  相似文献   

13.
Results for an inhomogeneously broadened60CoFe NMRON sample have been obtained for gamma detected single pulse (nutation) and two pulse (free induction decay) experiments in the region of intermediate-to-lowR(=1/). Here 1 is the angular frequency measure of the strength of the ferromagnetically enhanced RF field at the nucleus and is the HWHM of the inhomogeneously broadened line. Comparisons of the oscillatory FID signals obtained are made with the theoretical predictions of the following paper [6].  相似文献   

14.
15.
Considering the mixture after muon‐catalyzed fusion (μ CF) reaction as overdense plasma, we study muon motion in the plasma produced by a superintense linearly polarized femtosecond laser pulse. Muon drift along the propagation of laser radiation remains after the end of the laser pulse. At the peak laser intensity of 1021W/cm2, muon goes from the skin layer into field‐free matter at short time which is much less than the pulse duration, before the laser pulse reaches its maximum. Besides, the influence of the laser on other particles in the plasma is less. Hence, this work can avoid muon sticking to alpha (α) effectively and reduce muon‐loss probability in μ CF. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The femtosecond pulse generation in a c.w. pumped linear passive mode-locked rhodamine 6G-DODCI (3,3-diethyloxadicarbo cyanine iodide) dye laser is studied experimentally. Colliding pulse mode-locking (CPM) is achieved by placing the saturable absorber jet in the centre of the linear ring resonator. The laser performance is studied as a function of the saturable absorber concentration and of the absorber jet detuning from the central position (CPM position). Without a prism pair in the resonator pulse durations down to 140 fs were obtained. Detuning the absorber jet from the CPM position resulted in a trailing pulse tail ofcirca 900 fs duration. The dependence of the laser performance on the prism pair positioning is investigated experimentally and analysed theoretically. At the prism pair balanced position, stable pulses of about 50 fs duration were generated independent of the lateral detuning of the absorber jet out of the resonator centre. The dependence of the laser wavelength on the absorber concentration is compared with theoretical predictions. In an appendix the ray-tracing inside the linear resonator is simulated by an ABCD matrix calculation for Gaussian beams.  相似文献   

17.
A comparative experimental study of the X-ray emission in the water-window spectral region has been performed using carbon nanofibers (CNFs) of different sizes and graphite plate targets, irradiated with ultra-short (Ti:sapphire) laser pulses. More than an order of magnitude enhancement in the X-ray yield is observed from CNFs of 60-nm diameter with respect to graphite targets. The X-ray emission from CNFs of 160-nm diameter was also high. The integrated X-ray yield of these carbon-based targets scales with the laser intensity (I L) as IL ~ 1.3-1.4I_{\mathrm{L}}^{\sim 1.3-1.4} in the intensity range of 4×1016–4×1017 W/cm2. The effect of the laser pulse duration on the X-ray emission from the CNFs was also studied by varying the pulse duration from 45 fs up to 3 ps at a constant fluence of 2×104 J/cm2. The optimum laser pulse duration for maximum X-ray emission increases with the diameter of the CNFs used. The results are explained from physical considerations of heating and hydrodynamic expansion of the CNF plasma in which resonance field enhancement takes place while passing through two times the critical density. The results add to the efforts towards achieving an efficient low-cost water-window X-ray source for microscopy.  相似文献   

18.
Calculations of intense field (around 1016 W/cm2) single- and double-ionization processes in helium at XUV wavelengths are presented. The laser wavelength is chosen near the | 2s2p 1 P autoionization structure and the dynamics are explored. Single and double ionization yields, as well as the photoelectron energy spectrum for photon energies around the autoionization structure are calculated. In the case of a pulse of few femtoseconds duration, no significant enhancement of the double ionization yield has been found in tuning the photon frequency around the peak of the resonance. It is also shown that in the case of a long pulse (and hence narrow compared with the relevant autoionization width), the branching ratio of double to single ionization yield can be relatively enhanced by tuning to the absorption minimum of the resonance. Received 19 February 2002 / Received in final form 2 May 2002 Published online 19 July 2002  相似文献   

19.
The pulse development in colliding pulse mode-locked dye lasers is analysed theoretically. The chosen parameters belong to a c.w. argon laser pumped linear resonator arrangement with rhodamine 6G in ethylene glycol as gain medium and DODCI (3,3-diethyloxadicarbocyanine iodide) in ethylene glycol as saturable absorber. The pulse shortening and pulse broadening effects in the laser oscillator are investigated. The steady-state pulse duration is determined by equal pulse broadening and pulse shortening within a single resonator round-trip. The detuning of the absorber jet out of the middle position of the resonator is considered. Multiple transits through the resonator are simulated to study the influence of various resonator and dye parameters on the pulse development and the background signal suppression. Fast relaxations within theS 1 andS 0-state of DODCI are necessary for sufficient background suppression to obtain femtosecond pulse trains.  相似文献   

20.
The laser irradiation of tantalum targets is presented for different pulsed laser intensities ranging from 1010 up to about 1018 W/cm2 and pulse durations from 9 ns up to 40 fs. The results show that the produced non‐equilibrium plasma accelerates Ta ions in the backward direction from values of the order of keV up to values of about 5 MeV. In thin foils, the forward plasma, developed behind the target along the direction of incoming laser, at intensities of about 1016 W/cm2 and 300 ps pulse duration, accelerates Ta ions at energies of the order of 4.6 MeV and produces charge states up to about 40+. For fs lasers at intensities of the order of 1018 W/cm2, only proton acceleration occurs up to 2.1 MeV while no Ta ions are accelerated, due to the reduced duration of the electric field and to the too high inertial mass of the Ta ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号