首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a liquid chromatography–tandem mass spectrometry method was developed for the separation and simultaneous quantification of astragalosides I–IV in samples of Radix Astragali and a medicinal product thereof (Jinqi Jiangtang tablets). Chromatographic separation was achieved on an Agilent Eclipse XDB (ODS)‐C18 column with a mobile phase consisting of acetonitrile and 0.05% formic acid aqueous solution by use of an efficient 17‐min program. A triple quadrupole mass spectrometer was operated in positive ionization mode with multiple reaction monitoring for the detection of four astragalosides. The saponin ginsenoside Rg1 (similar structure to astralagosides) was used as an internal standard. All calibration curves showed excellent linear regressions (r2 ? 0.9912) within the range of tested concentrations. The intra‐ and inter‐day variations were below 4.57% in terms of RSD. The recoveries were 94.38–103.53% with RSD of 1.39–3.58% for spiked Radix Astragali samples. The method was successfully used for the analysis of samples of Radix Astragali and Jinqi Jiangtang tablets. In conclusion, we have developed a rapid, efficient, and accurate LC–MS/MS method for the detection of astragalosides, which can be applied for quality control of Radix Astragali and related medicinal products.  相似文献   

2.
D4020 resin offered the best dynamic adsorption and desorption capacity for total flavonoids based on the research results from ten kinds of macroporous resin. A column packed with D4020 resin was used to optimize the separation of total flavonoids from Flaveria bidentis (L.) Kuntze extracts. The content of flavonoids in the product was increased from 4.3 to 30.1% with a recovery yield of 90%. After the treatment with gradient elution on D4020 resin, the contents of isorhamnetin 3‐sulfate and astragalin were increased from 0.49 to 8.70% with a recovery yield of 74.1% and 1.16 to 30.8%, with a recovery yield of 92.2%, respectively. Further purification was carried out by one‐run high‐speed countercurrent chromatography yielding 4.5 mg of isorhamnetin 3‐sulfate at a high purity of 96.48% and yielding 24.4 mg of astragalin at a high purity of over 98.46%.  相似文献   

3.
In order to continue our previous studies concerning Geranium pyrenaicum Burm. (Geraniaceae), we have performed spectrophotometric determinations and a HPLC study of some polyphenols. We have analyzed the dried Geranii pyrenaici herba (harvested from Cluj-Napoca, district of Cluj, Romania). We have established the content in flavonoids (0.316%), phenolic acids (0.099%), tannins (5.295%), and anthocyanins (12.030 mg/100 g vegetal product). We have identified and measured by HPLC the following compounds: hyperoside (21.61 μg/100 mg), ellagic acid (1810.44 μg/100 mg), isoquercitrine (11.197 μg/100 mg), and caftaric acid (76.83 μg/100 mg). We have also analyzed by HPLC a hydrolyzed sample of the same drug in which we have identified and measured: ellagic acid (4139.33 μg/100 mg), quercetol (29.65 μg/100 mg), kaempherol (41.48 μg/100 mg), and caftaric acid (20.721 μg/100 mg). __________ Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 322–324, July–August, 2005.  相似文献   

4.
A feeding technology that was suitable for improving the nisin production by Lactococcus lactis subsp. lactis W28 was established. The effects of initial sucrose concentration (ISC) in the fermentation broth, feeding time, and feeding rate on the fermentation were studied. It was observed that a fed-batch culture (ISC = 10 g l−1) with 100 ml sucrose solution (190 g l−1) being evenly fed (9–10 ml h−1) into the fermenter after 3-h fermentation gave the best performance in terms of biomass and nisin yield. Under these conditions, the total biomass and the total nisin yield were approximately 23% and 51% higher than those in batch fermentation, respectively. When the sucrose concentration was controlled at 5–10 g l−1 in variable volume intermittent fed-batch fermentation (VVIF) with ISC = 10 g l−1, the total biomass and the total nisin yield were 29% and 60% above those in batch fermentation, respectively. The VVIF proved to be effective to eliminate the substrate inhibition by maintaining sucrose at appropriate levels. It is also easy to be scaled up, since various parameters involved in industrial production were taken into account.  相似文献   

5.
In this paper, macroporous resin column chromatography and counter‐current chromatography (CCC) were applied for large‐scale preparative separation of three flavonoids from the flower of Daphne genkwa, a famous Chinese medicinal herb. Nine kinds of resins were investigated by adsorption and desorption tests and D101 macroporous resin was selected for the first cleaning‐up, in which 40% aqueous ethanol was used to remove the undesired constituents and 90% aqueous ethanol was used to elute the targets. The crude extract after the first step was directly subjected to the preparative CCC purification using the solvent system composed of n‐hexane–ethyl acetate–methanol–water (4:5:4:5, v/v). The compounds apigemin (823 mg), 3‐hydroxyl‐genkwanin (842 mg) and genkwanin (998 mg) with the purities of 98.79, 97.71 and 93.53%, respectively, determined by HPLC were produced from 3‐g crude extract only in one CCC run. Their chemical structures were identified by MS, UV and the standards.  相似文献   

6.
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica–enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica–enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10−4 cm/s.  相似文献   

7.
Phenolic acids and derivatives of quercetin in Indian (amla) and European gooseberry were determined by high-performance liquid chromatography with diode array detector. The calibration curves were constructed using phenolic compounds standards (the coefficient of determination (R 2) was 0.9990–0.9997 for phenolic acids and 0.9989–0.9994 for flavonols, respectively). The lowest detection limit was 0.28 mg L−1 and 0.35 mg L−1 for hyperoside and gallic acid, respectively, whereas the highest was 1.80 mg L−1 and 7.98 mg L−1 for quercetin and chlorogenic acid, respectively. The quantification limits calculated were 0.85–24.04 mg L−1 for hyperoside and chlorogenic acid, respectively. The predominant phenolic acid in amla and gooseberry is gallic acid: (5.37 ± 0.04) mg per 100 g of dry mass (d.m.) and (3.21 ± 0.03) mg per 100 g of d.m., respectively. The next one was caffeic acid, 0.65–1.22 mg per 100 g of d.m., followed by p-coumaric acid, 0.84–1.17 mg per 100 g of d.m. Out of the flavonols, rutin is predominant: (3.11 ± 0.13) mg per 100 g of d.m. and (2.12 ± 0.03) mg per 100 g of d.m., respectively. Anti-oxidant activity was also determined.  相似文献   

8.
Stroke is among the leading causes of death and severe disability worldwide. Flavonoids have been extensively used in the treatment of ischemic stroke by reducing lactate dehydrogenase levels and thereby enhancing blood perfusion to the ischemic region. Here, we used ultrafiltration high‐performance liquid chromatography coupled with diode array detection and mass spectrometry for the rapid screening and identification of flavonoids from five Chinese medicinal herbs: soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. Using PC12 cells as a suitable in vitro model of toxicity, cell viability was quantitated using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The results showed that the extracts of soybean and the six major components, namely, acetyldaidzin, malonylgenistin, daidiain, glycitin, genistin, and acetylcitin; the extract of R. pueraria and its main component daidzein; the extract of F. pueraria and its three major components, tectorigenin, tectoridin, and tectorigenin‐7‐O‐xylosylglucosid; and the extract of R. belamcandae and its main component, tectoridin, were strong lactate dehydrogenase inhibitors. Also, the components of R. astragali showed no bioactivity. These findings indicate that the ultrafltration high‐performance liquid chromatography coupled with diode array detection and mass spectrometry method could be utilized in rapid screening and separation of bioactive compounds from a complex matrix.  相似文献   

9.
The total phenolic contents and the essential oil compositions of the previously unknown Stachys taxa (Labiatae), including Stachys pinardii Boiss, Stachys cretica L. subsp. mersinaea (Boiss.) Rech., and Stachys aleurites Boiss. & Heldr., all endemic to Turkey, were studied. Their essential oil compositions were investigated by GC-MS. It was found that the main constituents were α-curcumene (34.10%) for S. cretica, cedrandiol (25.26%) and caryophyllene dioxide (22.15%) for S. pinardii, and (Z)-β-caryophyllene (31.60%) for S. aleurites. The total phenolic contents, by the Folin-Ciocalteu colorimetric method, of the S. pinardii, S. cretica subsp. mersinaea, and S. aleurites methanolic extract were found to be 600.74±0.23, 1200.94±0.11, and 900.61±0.06 mg gallic acid equivalent (GAE)/100 g in dried herb, respectively. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 141–143, March–April, 2006.  相似文献   

10.
10‐Deacetylbaccatin III, an important semisynthetic precursor of paclitaxel and docetaxel, can be extracted from Taxus wallichiana Zucc. A process for the isolation and purification of 10‐deacetylbaccatin III ( 1 ), baccatin III ( 2 ), and 7β‐xylosyl‐10‐deacetyltaxol ( 3 ) from the leaves and branches of Taxus wallichiana Zucc. via macroporous resin column chromatography combined with high‐speed countercurrent chromatography or reversed‐phase flash chromatography was developed in this study. After fractionation by macroporous resin column chromatography, 80% methanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis. A solvent system composed of n‐hexane, ethyl acetate, methanol, and water (1.6:2.5:1.6:2.5, v/v/v/v) was used for the high‐speed countercurrent chromatography separation at a flow rate of 2.5 mL/min. The reversed‐phase flash chromatography separation was performed using methanol/water as the mobile phase at a flow rate of 3 mL/min. The high‐speed countercurrent chromatography separation produced compounds 1 (10.2 mg, 94.4%), 2 (2.1 mg, 98.0%), and 3 (4.6 mg, 98.8%) from 100 mg of sample within 110 min, while the reversed‐phase flash chromatography separation purified compounds 1 (9.8 mg, 95.6%) and 3 (4.9 mg, 97.9%) from 100 mg of sample within 120 min.  相似文献   

11.
Salvianic acid A (also known as danshensu) is a plant‐derived polyphenolic acid, and has a variety of physiological and pharmacological activities. Our laboratory previously constructed an unprecedented artificial biosynthetic pathway in Escherichia coli and established the fermentation process to produce salvianic acid A. Here, we developed an efficient method for separating salvianic acid A from the fermentation broth of engineered Escherichia coli by macroporous resins. Among ten tested macroporous resins, the static and dynamic adsorption/desorption experiments demonstrated that X5 resin was the best to separate salvianic acid A from fermentation broth. Other parameters during static and dynamic procedures were also investigated. Under the optimum separation conditions, the average adsorption capacity of SAA were 10.66±0.54 mg/g dry resin and the desorption ratio was 85.6±4.1%. The purity and recovery yield of salvianic acid A in the final dry product were 90.2±1.5 and 81.5±2.3%, respectively. The results show that adsorption separation with macroporous resin X5 was an efficient method to prepare salvianic acid A from fermentation broth. This work will benefit the development and application of plant‐derived salvianic acid A and its derivatives.  相似文献   

12.
A nondestructive NAA method based on the reaction 31P(n,γ)32P (T 1/2 = 14.23 d) has been developed where the product nucleus, a pure β-emitter with end point energy 1.71 MeV is measured by using an end window G.M. counter and an Al filter of 27 mg·cm−2. 32P was identified by measuring E β using Feather’s analysis and its half-life was found to be 15.3±0.2 days in standard reference materials (SRMs) and samples. For most reference materials (RMs) from NIST (USA) and IAEA (Vienna), our values agree within ±5% of the certified values. A variety of biological samples have also been analyzed and our values are in the range; medicinal herbs (n = 43), 0.29–5.23 mg/g; bhasmas (n = 19), 0.09–51.4 mg/g; vegetables (n = 8), 1.85–5.73 mg/g; lentils (n = 6), 2.1–5.5 mg/g; flours (n = 6), 1.3–3.3 mg/g; vegetarian diet (n = 5), 2.41–2.90 mg/g; fish (n = 43), 3.61–36.8 mg/g; human and animal milk (n = 6), 1.24–7.95 mg/g; commercial milk powders (n = 14), 2.76–11.9 mg/g; water from various sources (n = 14), 1–417 μg/l; human and animal blood (n = 9), 1.00–15.0 mg/g; cancerous and healthy breast tissue (n = 60), 1.00–8.63 mg/g; human hair (n = 43), 0.12–5.81 mg/g, where n is the number of samples analyzed. The method is simple, fast, and nondestructive and provides data within ±5% error limit with a detection limit of 0.1 mg/g.  相似文献   

13.
An integrated procedure was developed to extract and purify total flavonoids from Toona sinensis leaves for the first time, in which pressurized liquid extraction was performed in tandem with HPD100 macroporous resin column. Consequently, the total flavonoids can be extracted using 10% EtOH, and the recovery and purity of total flavonoids was 71.05% and 66.60%. Moreover, products of high quality were obtained in an environmentally friendly process with lower consumption of time and solvent. The results demonstrated that the integrated extraction-adsorption procedure was an efficient process for the preparation of total bioactive flavonoids from Toona sinensis leaves.  相似文献   

14.
通过静态吸附平衡和动态柱吸附试验,研究了自制大孔交联聚(对乙烯基苄基脲)树脂(简称PMVBU树脂)对银杏叶黄酮的吸附性能.结果表明,在pH=5.00时,该树脂对银杏叶黄酮有较好的吸附性能;PMVBU树脂对黄酮的吸附等温线符合Langmuir吸附等温方程,相关系数R^2〉0.99.308K时,PMVBU干树脂对黄酮的静态饱和吸附量达293.3mg/g.298K时,干树脂的动态吸附穿透容量为180mg/g.用75%的乙醇溶液对吸附在PMVBU树脂上的黄酮可进行有效洗脱.银杏叶提取液经过该树脂吸附柱吸附纯化后,黄酮纯度提高了18.6%,且树脂具有良好的重复使用性.  相似文献   

15.
采用大孔吸附树脂法从桑叶水提液中分离黄酮类化合物。通过比较10种大孔吸附树脂对桑叶水提液中总黄酮的吸附特性及机理,发现H103树脂对桑叶总黄酮吸附量大、洗脱容易、吸附速度快,是一种良好的桑叶总黄酮吸附剂。实验表明,H103树脂吸附桑叶黄酮的适宜上样浓度为6.05mg/mL,吸附动力学符合Bangham模型,吸附过程符合内扩散模型。  相似文献   

16.
Xin Huang  Yan Liu  Zhiqiang Liu 《Talanta》2009,78(3):1090-4315
The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (tR) of HPLC, the ESI-MSn data and the structures of analyzed compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring (MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result. The correlations of the isoflavonoids and astragalosides components and the antioxidant activities of Radix Astragali were summarized. The present paper demonstrates that HPLC-ESI-MSn is a powerful method for the characterization of the principal components and evaluation of the antioxidant activity of Chinese medicinal herbs.  相似文献   

17.
Denitrification of the electron donors toluene-C(15–100 mg/L), m-xylene-C (15–70 mg/L), benzene-C (5–25 mg/L), and acetate-C as experimental reference (50–140 mg/L) was carried out in batch culture. An initial concentration of 1.1±0.15 g of volatile suspended solids/L of denitrifying sludge without previous exposure to aromatic compounds was used as inoculum. The results showed toluene and nitrate consumption efficiency (E T and E N′ respectively) of 100%. Toluene was completely mineralized (oxidized) to CO2. In all cases, the N2N2) and HCO 3 yields (γHCO3) were 0.97±0.01 and 0.8±0.05, respectively. The consumption efficiency (E x ) of m-xylene (53±5.7%) was partial. The γN2 and γHCO3 were 0.96±0.01 and 0.86±0.02, respectively. Benzene was not consumed under denitrifying conditions. The specific consumption rates of toluene (q T ) and m-xylene (q X ) were lower than that of acetate (q A ). The differences in specific consumption rates were probably owing to the negative effect of benzene, toluene, and isomers of xylene on the cell membrane.  相似文献   

18.
The root of Carlina acanthifolia All. (Asteraceae) contained 1.0% of essential oil (expressed in g per 100 g of dried plant material). Using GC and GC/MS, nine components were identified (100% of total oil). The structure of benzyl 2-furylacetylene (carlina oxide), which is the principal component of the oil (91.5%), was spectrometrically identified. __________ Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 331–332, July–August, 2005.  相似文献   

19.
In this study, an effective method was developed for the isolation and enrichment of Ginkgo biloba extract by continuous chromatography system. The adsorption and desorption ratio of flavonoids as main index, the best macroporous resin was screened out from six resins by static adsorption and desorption tests. At the same time the adsorption and desorption parameters were optimized by dynamic adsorption and desorption tests. Under optimal parameters, five operations consisting of loading, washing, desorbing, regenerating, and balancing were integrated across the continuous chromatography system for the purpose of refining 66 L of crude extract solution. The results were as follows, 198.22 g of Ginkgo biloba extracts was produced, which contained 65.83 g of flavonoids and 15.44 g of lactones. The content of flavonoids and lactones increased from 2.76 and 0.72% in the crude extract to 33.21 and 7.79%, with a recovery yield of 91.26 and 81.21%. Methodology validation showed that the proposed method had high stability and reproducibility. Compared with the traditional macroporous resin method, the proposed method had a short processing time and low solvent consumption. Our studies indicated that the newly developed method is an effective procedure for the isolation and enrichment of Ginkgo biloba extract.  相似文献   

20.
Radix Scrophulariae (Xuanshen) is one of the famous Chinese herbal medicines widely used to treat rheumatism, tussis, pharyngalgia, arthritis, constipation, and conjunctival congestion. Harpagoside and cinnamic acid are the main bioactive components of Xuanshen. The purpose of this study was to develop an HPLC–UV method for simultaneous determination of harpagoside and cinnamic acid in rat plasma and investigate pharmacokinetic parameters of harpagoside and cinnamic acid after oral administration of Xuanshen extract (760 mg kg−1). After addition of syringin as internal standard, the analytes were isolated from plasma by liquid–liquid extraction. Separation was achieved on a Kromasil C18 column, and detection was by UV absorption at 272 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery, and limit of quantification according to the FDA validation guidelines. Calibration curves for both analytes were linear with the coefficient of variation (r) for both was greater than 0.999. Accuracy for harpagoside and cinnamic acid ranged from 100.7–103.5% and 96.9–102.9%, respectively, and precision for both analytes were less than 8.5%. The main pharmacokinetic parameters found for harpagoside and cinnamic acid after oral infusion of Xuanshen extract were as follows: C max 1488.7 ± 205.9 and 556.8 ± 94.2 ng mL−1, T max 2.09 ± 0.31 and (1.48 ± 0.14 h, AUC0–24 10336.4 ± 1426.8 and 3653.1 ± 456.4 ng h mL−1, 11276.8 ± 1321.4 and 3704.5 ± 398.8 ng h mL−1, and t 1/2 4.9 ± 1.3 and 2.5 ± 0.9 h, respectively. These results indicated that the proposed method is simple, selective, and feasible for pharmacokinetic study of Radix Scrophulariae extract in rats. Figure Radix Scrophulariae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号