首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
The expression of the continuous distribution function F(x) is obtained whenever % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaerbhv2BYDwAHbacfiGaa8xBaiaabIcacaWG4bGaaiilaiaadMha% caqGPaGaa8hiaiaab2dacaWFGaGaa8xraiaa-HcacaWFybGaa8hiai% aa-XhacaWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bca% cqGHKjYOcaWFGaGaa8xEaiaa-Lcaaaa!53EE!\[m{\rm{(}}x,y{\rm{)}} {\rm{ = }} E(X | x \le X \le y)\]is known. Moreover, we obtain the necessary and sufficient conditions so that any function m: 2 is the conditional expectation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGOaGaamiwaerbhv2BYDwAHbacfiGaa8hiaiaacYha% caWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bcacqGHKj% YOcaWFGaGaa8xEaiaacMcaaaa!4D0D!\[E(X | x \le X \le y)\]of a random variable X with continuous distribution function. Furthermore, we relate m(x,y) to order statistics.  相似文献   

2.
We review the theory of strongly elliptic operators on Lie groups and describe some new simplifications. Let U be a continuous representation of a Lie group G on a Banach space and a 1,...,a d a basis of the Lie algebra g of G. Let A i=dU(a i) denote the infinitesimal generator of the continuous one-parameter group t U(exp(-ta i)) and set % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0df9GqVa0-% aq0dXdarVe0-yr0RYxir-dbba9q8aq0-qq-He9q8qqQ8fq0-vr0-vr% Y-bdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCaaale% qajeaObaGaeyySdegaaOGaeyypa0JaamyqamaaBaaajeaWbaGaaeyA% aaWcbeaajaaOdaWgaaqcbaAaamaaBaaajiaObaGaaiiBaaqabaaaje% aObeaakiaacElacaGG3cGaai4TaiaadgeadaWgaaqcbaCaaiaabMga% aSqabaGcdaWgaaWcbaWaaSbaaKGaahaacaGGUbaameqaaaWcbeaaaa% a!4897!\[A^\alpha = A_{\rm{i}} _{_l } \cdot\cdot\cdotA_{\rm{i}} _{_n } \], where =(i 1,...,i n) with j and set ||=n. We analyze properties of mth order differential operators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0df9GqFj0-% aq0dXdarVe0-yr0RYxir-dbba9q8aq0-qq-He9q8qqQ8fq0-vr0-vr% Y-bdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2da9i% aabccadaaeqaqaaiaadogadaWgaaqcbaCaaiabgg7aHbWcbeaaaKqa% GgaacqGHXoqycaqG7aGaaeiiaiaabYhacqGHXoqycaqG8bGaeyizIm% QaaeyBaaWcbeqdcqGHris5aOGaamyqamaaCaaaleqajeaObaGaeyyS% degaaaaa!4A6C!\[H = {\rm{ }}\sum\nolimits_{\alpha {\rm{; |}}\alpha {\rm{|}} \le {\rm{m}}} {c_\alpha } A^\alpha \] with coefficients c . If H is strongly elliptic, i.e., % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0df9GqFj0-% aq0dXdarVe0-yr0RYxir-dbba9q8aq0-qq-He9q8qqQ8fq0-vr0-vr% Y-bdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOuaiaacwgacq% GH9aqpcaqGGaWaaabeaeaacaGGOaaajeaObaGaeyySdeMaae4oaiaa% bccacaqG8bGaeyySdeMaaeiFaiabg2da9iaab2gaaSqab0GaeyyeIu% oakiaabMgacqaH+oaEcaGGPaWaaWbaaSqabKqaGgaacqGHXoqyaaGc% cqGH+aGpcaaIWaaaaa!4C40!\[{\mathop{\rm Re}\nolimits} = {\rm{ }}\sum\nolimits_{\alpha {\rm{; |}}\alpha {\rm{|}} = {\rm{m}}} ( {\rm{i}}\xi )^\alpha > 0\] for all % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0df9GqVa0-% aq0dXdarVe0-yr0RYxir-dbba9q8aq0-qq-He9q8qqQ8fq0-vr0-vr% Y-bdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaeyicI4% SaeSyhHe6aaWbaaSqabeaacaWGKbaaaOGaaiixaiaacUhacaaIWaGa% aiyFaaaa!3EAA!\[\xi \in ^d \backslash \{ 0\} \], then we give a simple proof of the theorem that the closure of H generates a continuous (and holomorphic) semigroup on and the action of the semigroup is determined by a smooth, representation independent, kernel which, together with all its derivatives, satisfies mth order Gaussian bounds.  相似文献   

3.
For the problem of estimating the normal mean based on a random sample X 1,...,X n when a prior value 0 is available, a class of shrinkage estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaGaeyypa0Jaam4AaiaacIcadaqfqaqabKqaahaacaqGUb% aaleqaneaacaqGubaaaOGaaiykaiaabccadaqfqaqabKqaahaacaWG% UbaaleqaneaaceqGybGbaebaaaGccaqGGaGaey4kaSIaaeiiaiaacI% cacaaIXaGaaeiiaiabgkHiTiaabccacaWGRbGaaiikamaavababeqc% baCaaiaab6gaaSqab0qaaiaabsfaaaGccaGGPaGaaiykamaavababe% qcbaCaaiaad6gaaSqab0qaaiabeY7aTbaaaaa!5615!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k) = k(\mathop {\rm{T}}\nolimits_{\rm{n}} ){\rm{ }}\mathop {{\rm{\bar X}}}\nolimits_n {\rm{ }} + {\rm{ }}(1{\rm{ }} - {\rm{ }}k(\mathop {\rm{T}}\nolimits_{\rm{n}} ))\mathop \mu \nolimits_n \] is considered, where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqcdawaaiaadsfaaaGccaqGGaGaaeypaiaabcca% caWGUbWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccaGGOaWaa0% aaaeaacaWGybaaamaaBaaajeaWbaGaamOBaaWcbeaakiaabccacqGH% sislcaqGGaWaaubeaeqajeaWbaGaaGimaaWcbeqdbaGaaeiVdaaaki% aacMcacaqGGaGaae4laiabeccaGiabeo8aZbaa!4C33!\[\mathop T\nolimits_n {\rm{ = }}n^{1/2} (\overline X _n {\rm{ }} - {\rm{ }}\mathop {\rm{\mu }}\nolimits_0 ){\rm{ /}} \sigma \] and k is a weight function. For certain choices of k, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaaaaa!3CEE!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k)\] coincides with previously studied preliminary test and shrinkage estimators. We consider choosing k from a natural non-parametric family of weight functions so as to minimize average risk relative to a specified prior p. We study how, by varying p, the MSE efficiency (relative to \-X) properties of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaje% aWbaGaamOBaaWcbeqdbaGafqiVd0MbaKaaaaGccaqGGaGaaiikaiaa% dUgacaGGPaaaaa!3CEE!\[\mathop {\hat \mu }\nolimits_n {\rm{ }}(k)\] can be controlled. In the process, a certain robustness property of the usual family of posterior mean estimators, corresponding to the conjugate normal priors, is observed.  相似文献   

4.
The additive renormalization% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabs7adaWgaaWcbaGaaeySdiaab6cacaqG0bqefeKCPfgBaGqb% diaa-bcaaeqaaOGaeyypa0Jaa8hiaiaacIcacaaIYaGaeqiWdaNaai% ykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaGqadOGa% a4hiaiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaqGXoWaaWbaaS% qabeaacaqGYaaaaOGaai4laiaaikdacaGGPaGaa4hiaiaacQdaciGG% LbGaaiiEaiaacchacqGHXcqSdaWadiqaaiabgkHiTiaadkeacaGGNa% GaaiikaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaai4laiaa% ikdacaGFGaGaey4kaSIaa4hiaiaabg7acaWGcbGaai4jaiaacIcaca% WG0bGaaiykaaGaay5waiaaw2faaiaacQdaaaa!6C5C!\[{\rm{\delta }}_{{\rm{\alpha }}{\rm{.t}} } = (2\pi )^{ - 1/2} \exp ( - {\rm{\alpha }}^{\rm{2}} /2) :\exp \pm \left[ { - B'(t)^2 /2 + {\rm{\alpha }}B'(t)} \right]:\]is shown to be a generalized Brownian functional. Some of its properties are derived. is shown to be a generalized Brownian functional. Some of its properties are derived.On leave from Universidade do Minho, Area de Matematica, Largo Carlos Amarante, P-4700 Braga, Portugal.  相似文献   

5.
In this paper, the existence and uniqueness of solution of the limit boundary value problem $\[\ddot x = f(t,x)g(\dot x)\]$(F) $\[a\dot x(0) + bx(0) = c\]$(A) $\[x( + \infty ) = 0\]$(B) is considered, where $\[f(t,x),g(\dot x)\]$ are continuous functions on $\[\{ t \ge 0, - \infty < x,\dot x < + \infty \} \]$ such that the uniqueness of solution together with thier continuous dependence on initial value are ensured, and assume: 1)$\[f(t,0) \equiv 0,f(t,x)/x > 0(x \ne 0);\]$; 2) f(t,x)/x is nondecreasing in x>0 for fixed t and non-increasing in x<0 for fixed t, 3)$\[g(\dot x) > 0\]$, In theorem 1, farther assume: 4) $\[\int\limits_0^{ \pm \infty } {dy/g(y) = \pm \infty } \]$ Condition (A) may be discussed in the following three cases $x(0)=p(p \neq 0)$(A_1) $\[x(0) = q(q \ne 0)\]$(A_2) $\[x(0) = kx(0) + r{\rm{ }}(k > 0,r \ne 0)\]$(A_3) The notation $\[f(t,x) \in {I_\infty }\]$ will refer to the function f(t,x) satisfying $\[\int_0^{ + \infty } {\alpha tf(t,\alpha )dt = + \infty } \]$ for each $\alpha \neq 0$, Theorem. 1. For each $p \neq 0$, the boundary value problem (F), (A_1), (B) has a solution if and only if $f(t,x) \in I_{\infty}$ Theorem 2. For each$q \neq 0$, the boundary value problem (F), (A_2), (B) has a solution if and only if $f(t, x) \in I_{\infty}$. Theorem 3. For each k>0 and $r \neq 0$, the boundary value problem (F), (A_3), (B) has a solution if and only if f(t, x) \in I_{\infty}, Theorem 4. The boundary value problem (F), (A_j), (B) has at most one solution for j=l, 2, 3. .  相似文献   

6.
We determine all orthogonal polynomials having Boas-Buck generating functions g(t)(xf(t)), where% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHOo% qwcaGGOaGaamiDaiaacMcacqGH9aqpruqqYLwySbacfaGaa8hiamaa% BeaaleaacaaIWaaabeaakiaadAeacaqGGaWaaSbaaSqaaiaabgdaae% qaaOGaaeikaiaadggacaGGSaGaa8hiaiaadshacaqGPaGaaeilaiaa% bccacaqGGaGaaeiiaiaadggacqGHGjsUcaaIWaGaaiilaiaa-bcacq% GHsislcaaIXaGaaiilaiaa-bcacqGHsislcaaIYaGaaiilaiablAci% ljaacUdaaeaacqqHOoqwcaGGOaGaamiDaiaacMcacqGH9aqpcaWFGa% WaaSraaSqaaiaaicdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOm% aaqabaGccaGGOaWaaSqaaSqaaiaaigdaaeaacaaIZaaaaOGaaiilai% aa-bcadaWcbaWcbaGaaGOmaaqaaiaaiodaaaGccaGGSaGaa8hiaiaa% dshacaGGPaGaa8hiamaaBeaaleaacaaIWaaabeaakiaadAeacaqGGa% WaaSbaaSqaaiaabkdaaeqaaOGaaeikamaaleaaleaacaaIYaaabaGa% aG4maaaakiaacYcacaWFGaWaaSqaaSqaaiaaisdaaeaacaaIZaaaaO% Gaaiilaiaa-bcacaWG0bGaaiykaiaacYcacaWFGaWaaSraaSqaaiaa% icdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOmaaqabaGccaGGOa% WaaSqaaSqaaiaaisdaaeaacaaIZaaaaOGaaiilaiaa-bcadaWcbaWc% baGaaGynaaqaaiaaiodaaaGccaGGSaGaa8hiaiaadshacaGGPaGaai% 4oaaqaaiabfI6azjaacIcacaWG0bGaaiykaiabg2da9iaa-bcadaWg% baWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaacaqGZaaabe% aakiaacIcadaWcbaWcbaGaaGymaaqaaiaaisdaaaGccaGGSaGaa8hi% amaaleaaleaacaaIYaaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaS% qaaiaaiodaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGaaiykaiaa% -bcadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaaca% qGZaaabeaakiaabIcadaWcbaWcbaGaaGOmaaqaaiaaisdaaaGccaGG% SaGaa8hiamaaleaaleaacaaIZaaabaGaaGinaaaakiaacYcacaWFGa% WaaSqaaSqaaiaaiwdaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGa% aiykaiaacYcaaeaadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiam% aaBaaaleaacaqGZaaabeaakiaacIcadaWcbaWcbaGaaG4maaqaaiaa% isdaaaGccaGGSaGaa8hiamaaleaaleaacaaI1aaabaGaaGinaaaaki% aacYcacaWFGaWaaSqaaSqaaiaaiAdaaeaacaaI0aaaaOGaaiilaiaa% -bcacaWG0bGaaiykaiaacYcacaGGUaGaa8hiamaaBeaaleaacaaIWa% aabeaakiaadAeacaqGGaWaaSbaaSqaaiaabodaaeqaaOGaaeikamaa% leaaleaacaaI1aaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaSqaai% aaiAdaaeaacaaI0aaaaOGaaiilaiaa-bcadaWcbaWcbaGaaG4naaqa% aiaaisdaaaGccaGGSaGaa8hiaiaadshacaGGPaGaaiOlaaaaaa!C1F3!\[\begin{gathered}\Psi (t) = {}_0F{\text{ }}_{\text{1}} {\text{(}}a, t{\text{), }}a \ne 0, - 1, - 2, \ldots ; \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{2}} (\tfrac{1}{3}, \tfrac{2}{3}, t) {}_0F{\text{ }}_{\text{2}} {\text{(}}\tfrac{2}{3}, \tfrac{4}{3}, t), {}_0F{\text{ }}_{\text{2}} (\tfrac{4}{3}, \tfrac{5}{3}, t); \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{3}} (\tfrac{1}{4}, \tfrac{2}{4}, \tfrac{3}{4}, t) {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{2}{4}, \tfrac{3}{4}, \tfrac{5}{4}, t), \hfill \\{}_0F{\text{ }}_{\text{3}} (\tfrac{3}{4}, \tfrac{5}{4}, \tfrac{6}{4}, t),. {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{5}{4}, \tfrac{6}{4}, \tfrac{7}{4}, t). \hfill \\\end{gathered}\]We also determine all Sheffer polynomials which are orthogonal on the unit circle. The formula for the product of polynomials of the Boas-Buck type is obtained.  相似文献   

7.
Résumé Nous étudions ici un système d'équations aux dérivées partielles qui gouverne la convection naturelle dans un milieu poreux soumis à un gradient de température T. Sous leur forme la plus générale, ces équations s'écrivent:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\] désigne la porosité, la masse volumique du fluide, V la vitesse, p la pression, T la température du fluide, la viscosité, K et % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4MdmaaCa% aaleqabaGaaeOkaaaaaaa!37E8!\[{\text{\Lambda }}^{\text{*}} \] sont les tenseurs respectifs de perméabilité et de conductivité thermique. La chaleur volumique du fluide est notée (c) f , celle du solide (c) s , et on définit alors la chaleur volumique équivalente par la relation: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYjaadogacaqGPaWaaWbaaSqabeaacaqGQaaaaOGaeyypa0Jaeyic% I4Saaiikaiabeg8aYjaadogacaGGPaWaaSbaaSqaaiaadAgaaeqaaO% Gaey4kaSIaaiikaiaaigdacaqGGaGaeyOeI0IaeyicI4Saaiykaiaa% cIcacqaHbpGCcaWGJbGaaiykaaaa!4C87!\[{\text{(}}\rho c{\text{)}}^{\text{*}} = \in (\rho c)_f + (1{\text{ }} - \in )(\rho c)\].De façon très classique, dans les problèmes de convection, on simplifie ce modèle en faisant l'approximation de Boussinesq qui consiste à négliger les variations de la masse volumique sauf dans le terme g, voir par exemple [6]. Ce modèle connu depuis longemps a été très étudié par de nombreux physiciens et numériciens depuis une dizaine d'années (voir par exemple [3–5, 7, 8, 18, 24]) mais à notre connaissance accune étude théorique n'a été entreprise jusqu'à aujourd'hui.On se limitera ici au cas d'un milieu homogène isotrope remplissant une cavité parallélépipédique dont l'un des axes a même direction que l'accélération de la pesanteur g. Sous forme adimensionnelle le système P 2 s'écrit:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\]Dans % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey% ypa0Jaai4EaiaacIcacaWG4bGaaiilaiaabccacaWG5bGaaeilaiaa% bccacaWG6bGaaiykaiabgIGiolaac2facaaIWaGaaiilaiaabccaca% WGmbGaai4waerbbjxAHXgaiuaacaWFfrGaaiyxaiaaicdacaGGSaGa% aeiiaiaadYgacaGGBbGaa8xreiaac2facaaIWaGaaiilaiaabccaca% WGObGaai4waiaac2haaaa!54B3!\[\Omega = \{ (x,{\text{ }}y{\text{, }}z) \in ]0,{\text{ }}L[]0,{\text{ }}l[]0,{\text{ }}h[\} \]: de frontière les conditions aux limites sont:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGub% GaaiikaiaadIhacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiaiaabcda% caGGPaGaeyypa0JaaGymaiaacYcacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaadsfacaGGOaGaamiEaiaacYcacaqGGaGaamyEaiaacYca% caqGGaGaamiAaiaacMcacqGH9aqpcaaIWaGaaiilaaqaamacmc4caa% qaiWiGcWaJaAOaIyRaiWiGdsfaaeacmcOamWiGgkGi2kacmc4G4baa% aiaacIcacaaIWaGaaiilaiaabccacaWG5bGaaiilaiaabccacaWG6b% Gaaiykaiabg2da9maalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaa% dIhaaaGaaiikaiaadYeacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGaeyOa% IyRaamiEaaaacaGGOaGaamiEaiaacYcacaqGGaGaamiBaiaacYcaca% qGGaGaamOEaiaacMcacqGH9aqpcaaIWaGaaiilaaqaaiaadAfacqGH% flY1caqGGaGaamOBamaaBaaaleaaruqqYLwySbacfaGaa8hFaiabgk% Gi2kabfM6axbqabaGccqGH9aqpcaaIWaaaaaa!8886!\[\begin{gathered} T(x,{\text{ }}y,{\text{ 0}}) = 1,{\text{ }}T(x,{\text{ }}y,{\text{ }}h) = 0, \hfill \\ \frac{{\partial T}}{{\partial x}}(0,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(L,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(x,{\text{ }}l,{\text{ }}z) = 0, \hfill \\ V \cdot {\text{ }}n_{|\partial \Omega } = 0 \hfill \\ \end{gathered} \], où n est la normale unitaire sortante à .Le vecteur adimensionnel k est pris égal à-e z, Ra * est un paramètre proportionnel à la contrainte exercée au milieu et S un paramètre très petit [Smin(10-6, 10-6 Ra *)] que l'on fera tendre par la suite vers zéro.Dans [10, 11] nous avons étudié le problème bidimensionnel aussi bien d'évolution que stationnaire et nous avons montré, outre un théorème d'existence, d'unicité et de régularité, la présence de plusieurs solutions stationnaires. Le phénomène nous a incité à étudier le comportement asymptotique des solutions du problème d'évolution. Afin de rendre cette étude plus complète nous avons décidé de travailler en dimension 3 d'espace.Ce papier donne les résultats préliminaires à une étude un peu fine du comportement asymptotique. Nous allons en particulier établir un théorème de régularité et donner une majoration uniforme des dérivées secondes en espace des solutions dans le cas où S=0. Ces propriétés sont similaires à celles connues pour les équations de Navier-Stokes dans le cas bidimensionnel [13, 26] et généralisent à la dimension trois ceux que nous avons obtenus dans [10].La clef de le preuve du théorème d'existence et d'unicité est une estimation L en temps et en espace de la température T obtenue en découplant l'équation de l'énergie (0.3) et l'équation de Darcy (0.2). Ensuite on applique une méthode de point fixe. La régularité en espace est liée à la structure particulière de l'ouvert ainsi qu'à la nature des conditions limites. Cela étant acquis, les majorations uniformes en temps sont obtenues de façon assez classique. Nous étendons enfin à notre système les résultats obtenus par Foias et Temam [15] pour les équations de Navier-Stokes en dimension deux d'espace. Rappelons qu'il s'agit alors de montrer que la solution est parfaitement déterminée par ses valeurs prises sur un ensemble fini de points.Avant d'aller plus avant dans ce travail, signalons que l'on se ramène à des conditions aux limites homogènes en posant % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2% da9iabeI7aXjabgUcaRiaaigdacqGHsislcaGGOaGaamOEaiaac+ca% caWGObGaaiykaaaa!4004!\[T = \theta + 1 - (z/h)\]. Le système devient:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaadaWcaaqaaiabgkGi2kab% eI7aXbqaaiabgkGi2kaadshaaaGaeyOeI0IaeyiLdqKaeqiUdeNaey% 4kaSIaamOvaiabgwSixlabgEGirlabeI7aXjabgkHiTmaalaaabaGa% aGymaaqaaiaadIgaaaGaeqyXdu3aaSbaaSqaaiaaiodaaeqaaOGaey% ypa0JaaGimaaqaaiaadofadaWcaaqaaiabgkGi2kaadAfaaeaacqGH% ciITcaWG0baaaiabgUcaRiaadAfacqGHRaWkcqGHhis0cqaHapaCcq% GHRaWkcaWGsbGaamyyamaaCaaaleqabaGaaiOkaaaakiaadUgacqaH% 4oqCcqGH9aqpcaaIWaaabaGaaeizaiaabMgacaqG2bGaaeiiaiaadA% facqGH9aqpcaaIWaaabaGaamOvaiabgwSixlaad6gadaWgaaWcbaqe% feKCPfgBaGqbaiaa-XhacqqHtoWraeqaaOGaeyypa0JaaGimaaqaai% abeI7aXjaacIcacaWG4bGaaiilaiaadMhacaGGSaGaaGimaiaacMca% cqGH9aqpcqaH4oqCcaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadI% gacaGGPaGaeyypa0JaaGimaaqaamaalaaabaGaeyOaIyRaeqiUdeha% baGaeyOaIyRaamiEaaaacaGGOaGaaGimaiaacYcacaWG5bGaaiilai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcqaH4oqCaeaacqGH% ciITcaWG4baaaiaacIcacaWGmbGaaiilaiaadMhacaGGSaGaamOEai% aacMcacqGH9aqpcaaIWaaabaWaaSaaaeaacqGHciITcqaH4oqCaeaa% cqGHciITcaWG5baaaiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaam% OEaiaacMcacqGH9aqpdaWcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi% 2kaadMhaaaGaaiikaiaadIhacaGGSaGaamiBaiaacYcacaWG6bGaai% ykaiabg2da9iaaicdaaaGaay5Eaaaaaa!B7C4!\[P_1 \left\{ \begin{gathered} \frac{{\partial \theta }}{{\partial t}} - \Delta \theta + V \cdot \nabla \theta - \frac{1}{h}\upsilon _3 = 0 \hfill \\ S\frac{{\partial V}}{{\partial t}} + V + \nabla \pi + Ra^* k\theta = 0 \hfill \\ {\text{div }}V = 0 \hfill \\ V \cdot n_{|\Gamma } = 0 \hfill \\ \theta (x,y,0) = \theta (x,y,h) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial x}}(0,y,z) = \frac{{\partial \theta }}{{\partial x}}(L,y,z) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial y}}(x,0,z) = \frac{{\partial \theta }}{{\partial y}}(x,l,z) = 0 \hfill \\ \end{gathered} \right.\]
Strong solutions and asymptotic behaviour for a natural convection problem in porous media
We discuss a system of partial differential equations which describes natural convection in a porous medium under a temperature gradient T. In their most general form these equations can be written% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\]where represents the porosity, is the fluid density, T is the temperature, is the dynamic viscosity, K and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4MdmaaCa% aaleqabaGaaeOkaaaaaaa!37E8!\[{\text{\Lambda }}^{\text{*}} \] are, respectively, the tensor of permeability and of thermal conductivity. The heat capacity of fluid (resp., solid) is denoted by (c) f (resp., (c) s ). Thus, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYjaadogacaqGPaWaaWbaaSqabeaacaqGQaaaaOGaeyypa0Jaeyic% I4Saaiikaiabeg8aYjaadogacaGGPaWaaSbaaSqaaiaadAgaaeqaaO% Gaey4kaSIaaiikaiaaigdacaqGGaGaeyOeI0IaeyicI4Saaiykaiaa% cIcacqaHbpGCcaWGJbGaaiykaaaa!4C87!\[{\text{(}}\rho c{\text{)}}^{\text{*}} = \in (\rho c)_f + (1{\text{ }} - \in )(\rho c)\] represents the equivalent heat capacity.As is usual in convection problems, we simplify the model by adopting the Boussinesq approximation which consists of neglecting the density variations except in the g term, (cf., for instance, [6]). This well-known model has often been studied by physicists and numerical analysts, but ([3–5, 7, 8, 18, 24]), as far as we know, it seems that a theoretical approach has not yet been developed. We shall restrict our study to the case of a homogeneous isotropic medium filling a parallelepipedic cavity, one of the axis of which is colinear to the gravitational acceleration g. In dimensionless form, the system P 1 can be written% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacaqGWaGaaeOlaiaabgda% caqGGaGaaeiiaiaabccacaqGKbGaaeyAaiaabAhacaqGGaGaamOvai% abg2da9iaaicdaaeaacaaIWaGaaiOlaiaaikdacaqGGaGaaeiiaiaa% bccacaWGtbWaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiDaa% aacqGHRaWkcaWGwbGaey4kaSIaae4zaiaabkhacaqGHbGaaeizaiaa% bccacaWGWbGaey4kaSIaamOuaiaadggadaahaaWcbeqaaiaacQcaaa% GccaWGRbGaamivaiabg2da9iaaicdaaeaacaaIWaGaaiOlaiaaioda% caqGGaGaaeiiaiaabccadaWcaaqaaiabgkGi2kaadsfaaeaacqGHci% ITcaWG0baaaiabgkHiTiabgs5aejaadsfacqGHRaWkcaqGGaGaamOv% aiaabccacaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfacqGH9a% qpcaaIWaGaaiOlaaaacaGL7baaaaa!71EF!\[P_1 \left\{ \begin{gathered} {\text{0}}{\text{.1 div }}V = 0 \hfill \\ 0.2{\text{ }}S\frac{{\partial V}}{{\partial t}} + V + {\text{grad }}p + Ra^* kT = 0 \hfill \\ 0.3{\text{ }}\frac{{\partial T}}{{\partial t}} - \Delta T + {\text{ }}V{\text{ grad }}T = 0. \hfill \\ \end{gathered} \right.\]With boundary conditions in % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey% ypa0Jaai4EaiaacIcacaWG4bGaaiilaiaabccacaWG5bGaaeilaiaa% bccacaWG6bGaaiykaiabgIGiolaac2facaaIWaGaaiilaiaabccaca% WGmbGaai4waerbbjxAHXgaiuaacaWFfrGaaiyxaiaaicdacaGGSaGa% aeiiaiaadYgacaGGBbGaa8xreiaac2facaaIWaGaaiilaiaabccaca% WGObGaai4waiaac2haaaa!54B3!\[\Omega = \{ (x,{\text{ }}y{\text{, }}z) \in ]0,{\text{ }}L[]0,{\text{ }}l[]0,{\text{ }}h[\} \]:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGub% GaaiikaiaadIhacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiaiaabcda% caGGPaGaeyypa0JaaGymaiaacYcacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaadsfacaGGOaGaamiEaiaacYcacaqGGaGaamyEaiaacYca% caqGGaGaamiAaiaacMcacqGH9aqpcaaIWaGaaiilaaqaamacmc4caa% qaiWiGcWaJaAOaIyRaiWiGdsfaaeacmcOamWiGgkGi2kacmc4G4baa% aiaacIcacaaIWaGaaiilaiaabccacaWG5bGaaiilaiaabccacaWG6b% Gaaiykaiabg2da9maalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaa% dIhaaaGaaiikaiaadYeacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGaeyOa% IyRaamiEaaaacaGGOaGaamiEaiaacYcacaqGGaGaamiBaiaacYcaca% qGGaGaamOEaiaacMcacqGH9aqpcaaIWaGaaiilaaqaaiaadAfacqGH% flY1caqGGaGaamOBamaaBaaaleaaruqqYLwySbacfaGaa8hFaiabgk% Gi2kabfM6axbqabaGccqGH9aqpcaaIWaaaaaa!8886!\[\begin{gathered} T(x,{\text{ }}y,{\text{ 0}}) = 1,{\text{ }}T(x,{\text{ }}y,{\text{ }}h) = 0, \hfill \\ \frac{{\partial T}}{{\partial x}}(0,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(L,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(x,{\text{ }}l,{\text{ }}z) = 0, \hfill \\ V \cdot {\text{ }}n_{|\partial \Omega } = 0 \hfill \\ \end{gathered} \], where n is the outward normal unit sector to .The dimensionless vector k stands for the unit gravitational acceleration vector and Ra * is a parameter which is proportional to the constraint acting on the medium. S is a small parameter (Smin{(106, 10-6 Ra *)}) which will eventually vanish to zero.In an earlier work [10, 11], we studied the two-dimensional case for both the evolution and stationary problem and showed the existence uniqueness and regularity of the evolution problem. However, we did show that several stationary solutions exist.We were then led to study the asymptotic behaviour of the solution of the evolution problem. To make this study more general we decided to work in three-dimensional space.This article contains the preliminary results to a somewhat fine study to an asymptotic behaviour. More precisely, we establish a regularity theorem and give a uniform estimation in time of second-order space derivatives of the solutions in the case S=0. These properties are similar to those found in two-dimensional Navier-Stokes equations and extend the solutions obtained in [10] to three dimensions.The key to the proof of the existence and uniqueness theorem is an L estimation in space and time of temperature T obtained by rendering the energy equation (0.3) and the Darcy equation (0.2) independent. Then a fixed point method is applied. Space regularity is related to a particular structure of the domain and also to the type of boundary conditions. Uniform time estimates can thus be obtained by a fairly classical method.In the spirit of the Foias and Temam paper [15], we extend some of their results to our system and show that the solution is completely determined by its nodal values on a finite set.Before proceding further, it should be pointed out that the change of the unknown % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2% da9iabeI7aXjabgUcaRiaaigdacqGHsislcaGGOaGaamOEaiaac+ca% caWGObGaaiykaaaa!4004!\[T = \theta + 1 - (z/h)\] leads to homogeneous boundary conditions. The system can then be written% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaadaWcaaqaaiabgkGi2kab% eI7aXbqaaiabgkGi2kaadshaaaGaeyOeI0IaeyiLdqKaeqiUdeNaey% 4kaSIaamOvaiabgwSixlabgEGirlabeI7aXjabgkHiTmaalaaabaGa% aGymaaqaaiaadIgaaaGaeqyXdu3aaSbaaSqaaiaaiodaaeqaaOGaey% ypa0JaaGimaaqaaiaadofadaWcaaqaaiabgkGi2kaadAfaaeaacqGH% ciITcaWG0baaaiabgUcaRiaadAfacqGHRaWkcqGHhis0cqaHapaCcq% GHRaWkcaWGsbGaamyyamaaCaaaleqabaGaaiOkaaaakiaadUgacqaH% 4oqCcqGH9aqpcaaIWaaabaGaaeizaiaabMgacaqG2bGaaeiiaiaadA% facqGH9aqpcaaIWaaabaGaamOvaiabgwSixlaad6gadaWgaaWcbaqe% feKCPfgBaGqbaiaa-XhacqqHtoWraeqaaOGaeyypa0JaaGimaaqaai% abeI7aXjaacIcacaWG4bGaaiilaiaadMhacaGGSaGaaGimaiaacMca% cqGH9aqpcqaH4oqCcaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadI% gacaGGPaGaeyypa0JaaGimaaqaamaalaaabaGaeyOaIyRaeqiUdeha% baGaeyOaIyRaamiEaaaacaGGOaGaaGimaiaacYcacaWG5bGaaiilai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcqaH4oqCaeaacqGH% ciITcaWG4baaaiaacIcacaWGmbGaaiilaiaadMhacaGGSaGaamOEai% aacMcacqGH9aqpcaaIWaaabaWaaSaaaeaacqGHciITcqaH4oqCaeaa% cqGHciITcaWG5baaaiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaam% OEaiaacMcacqGH9aqpdaWcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi% 2kaadMhaaaGaaiikaiaadIhacaGGSaGaamiBaiaacYcacaWG6bGaai% ykaiabg2da9iaaicdaaaGaay5Eaaaaaa!B7C4!\[P_1 \left\{ \begin{gathered} \frac{{\partial \theta }}{{\partial t}} - \Delta \theta + V \cdot \nabla \theta - \frac{1}{h}\upsilon _3 = 0 \hfill \\ S\frac{{\partial V}}{{\partial t}} + V + \nabla \pi + Ra^* k\theta = 0 \hfill \\ {\text{div }}V = 0 \hfill \\ V \cdot n_{|\Gamma } = 0 \hfill \\ \theta (x,y,0) = \theta (x,y,h) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial x}}(0,y,z) = \frac{{\partial \theta }}{{\partial x}}(L,y,z) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial y}}(x,0,z) = \frac{{\partial \theta }}{{\partial y}}(x,l,z) = 0 \hfill \\ \end{gathered} \right.\]
  相似文献   

8.
Let P N and Q N , N1, be two possible probability distributions of a random vector X N =(XN1,...,XNN), whose components are independent. Suppose P N and Q N have respective densities % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamiCamaaBaaaleaacaWGobaabeaakiabg2da9maaxadabaGaeuiO% dafaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaaGccaWGMbGaai% ikaiaadIhadaWgaaWcbaGaamOtaiaadMgaaeqaaOGaeyOeI0YaaCbi% aeaacqaH4oqCaSqabeaacaGGFbaaaOWaaSbaaSqaaiaad6eaaeqaaO% Gaaiykaaaa!4DEC!\[p_N = \mathop \Pi \limits_{i = 1}^N f(x_{Ni} - \mathop \theta \limits^\_ _N )\] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamyCamaaBaaaleaacaWGobaabeaakiabg2da9maaxadabaGaeuiO% dafaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaaGccaWGMbGaai% ikaiaadIhadaWgaaWcbaGaamOtaiaadMgaaeqaaOGaeyOeI0IaeqiU% de3aaSbaaSqaaiaad6eacaWGPbaabeaakiaacMcaaaa!4DA5!\[q_N = \mathop \Pi \limits_{i = 1}^N f(x_{Ni} - \theta _{Ni} )\], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqaH4oqCaSqabeaacaGGFbaaaOWaaSbaaSqaaiaad6ea% aeqaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakm% aaqahabaGaeqiUde3aaSbaaSqaaiaad6eacaWGPbaabeaaaeaacaWG% PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa!4C75!\[\mathop \theta \limits^\_ _N = N^{ - 1} \sum\limits_{i = 1}^N {\theta _{Ni} } \], such that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbeaeaacaqGTbGaaeyyaiaabIhaaSqaaiaaigdacqGHKjYOcaWG% PbGaeyizImQaamOtaaqabaGccaGG8bGaeqiUde3aaSbaaSqaaiaad6% eacaWGPbaabeaakiabgkHiTmaaxacabaGaeqiUdehaleqabaGaai4x% aaaakmaaBaaaleaacaWGobaabeaakiaacYhacqGH9aqpcaWGpbGaai% ikaiaad6eadaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaa% kiaacMcaaaa!5647!\[\mathop {{\rm{max}}}\limits_{1 \le i \le N} |\theta _{Ni} - \mathop \theta \limits^\_ _N | = O(N^{ - 1/2} )\], f(x)>0 for almost every real x, f is absolutely continuous, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbeaeaaciGGZbGaaiyDaiaacchaaSqaaiabeI7aXjaad+gacqGH% KjYOcqaH4oqCcqGHKjYOcqaH4oqCcaWGVbaabeaakmaapedabaGaai% 4waiaadAgaaSqaaiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaai4j% aiaacIcacaWG4bGaeyOeI0IaeqiUdeNaaiykamaaCaaaleqabaGaaG% Omaaaakiaac+cacaWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIha% cqGH8aapcqGHEisPaaa!5ECE!\[\mathop {\sup }\limits_{\theta o \le \theta \le \theta o} \int_\infty ^\infty {[f} '(x - \theta )^2 /f(x)dx < \infty \] for some % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaeyOpa4JaaGimaaaa!3FD4!\[\theta _0 > 0\]. The contiguity of {q N } to {p N } is well known. In this paper it is proven that under these conditions {Q N } preserves C.-T.L.D. (Cramér-type large deviation) from {P N } for a general class of statistics which includes R-, U- and L-statistics as members. That means, for any {S N =SN(XN)} from , a C.-T.L.D. theorem with range Cxo(N) (any C0), 0<4-1, holds for {S N } under {P N }, implying that the same theorem holds for {S N } under {Q N }. It also provides a quick and simple way to establish C.-T.L.D. results for statistics under {Q N }.Research supported in part by grant VE87080 from the National Science Council, Republic of China.Part of the research was done while the author was visiting the Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.  相似文献   

9.
For the regression model % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa% aajeaWbaGaamyAaaWcbeaakiabeccaGiabg2da9iabeccaGiaabAga% caGGOaGaamiDamaaBaaajeaWbaGaamyAaaWcbeaakiaacMcacaqGGa% Gaey4kaSIaaeiiamaavababeqcbaCaaiaadMgaaSqab0qaaiabew7a% LbaakiaabccacaGGOaGaeqyTduMaai4jaiaadohacaqGGaGaamyAai% aadMgacaWGKbGaaeiiaiaad6eacaGGOaGaam4taiaacYcacaqGGaGa% eq4Wdm3aaWbaaSqabKqaGgaacaaIYaaaaOGaaiykaiaacMcaaaa!57B9!\[y_i = {\rm{f}}(t_i ){\rm{ }} + {\rm{ }}\mathop \varepsilon \nolimits_i {\rm{ }}(\varepsilon 's{\rm{ }}iid{\rm{ }}N(O,{\rm{ }}\sigma ^2 ))\], it is proposed to test the null hypothesis that f is a polynomial of degree less than some given value m. The alternative is that f is such a polynomial plus a scale factor b 1/2 times an (m–1)-fold integrated Wiener process. For this problem, it is shown that no uniformly (in b) most powerful test exists, but a locally (at b=0) most powerful test does exist. Derivation and calculation of the test statistic is based on smoothing spline theory. Some approximations of the null distribution of the test statistic for the locally most powerful test are described. An example using real data is shown along with a computing algorithm.This author's research was supported by the National Science Foundation under grants numbered DMS-8202560 and DMS-8603083.  相似文献   

10.
In this paper we consider the relationship between the topological dimension and the lower and upper q-Rényi dimensions and of a Polish space X for q ∈ [1, ∞]. Let and denote the Hausdorff dimension and the packing dimension, respectively. We prove that for all analytic metric spaces X (whose upper box dimension is finite) and all q ∈ (1, ∞); of course, trivially, for all q ∈ [1, ∞]. As a corollary to this we obtain the following result relating the topological dimension and the lower and upper q-Rényi dimensions: for all Polish spaces X and all q ∈ [1, ∞]; in (1) and (2) we have used the following notation, namely, for two metric spaces X and Y, we write XY if and only if X is homeomorphic to Y. Equality (1) has recently been proved for q = ∞ by Myjak et al. Author’s address: Department of Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland  相似文献   

11.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

12.
Let fi, i = 1, ... k, be complex-valued multiplicative functions satisfying the conditions
where i C, (*)
and
, (i = 1, ..., k), with some 0 < 1. Under these conditions we prove that % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% aIXaaabaGaeqiWdaNaaiikaiaadIhacaGGPaaaamaaqafabaGaamyq% aiaacIcacaWGWbGaey4kaSIaaGymaiaacMcacqWIQjspdaWcaaqaai% aabYgacaqGVbGaae4zaiaabccacaqGSbGaae4BaiaabEgacaqGGaGa% amiEaaqaaiaadIhaaaaaleaacaWGWbWefv3ySLgznfgDOjdaryqr1n% gBPrginfgDObcv39gaiuaacqWFMjIHcaWG4baabeqdcqGHris5aOWa% aabuaeaacaWGbbGaaiikaiaad6gacaGGPaGaey4kaSYaaSaaaeaaca% qGOaGaaeiBaiaab+gacaqGNbGaaeiiaiaabYgacaqGVbGaae4zaiaa% bccacaqGXaGaaeimaiaadIhacaGGPaWaaWbaaSqabeaadaWcaaqaai% aadogaaeaacaaIYaaaaiabgUcaRiaaigdaaaaakeaacaqGOaGaaeiB% aiaab+gacaqGNbGaaeiiaiaadIhacaGGPaWaaWbaaSqabeaadaWcaa% qaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4x8% depabaGaaGOmaaaaaaaaaaqaaiaad6gacqWFMjIHcaWG4bGae8ha3J% habeqdcqGHris5aOGaai4oaaaa!863E!\[\frac{1}{{\pi (x)}}\sum\limits_{p \leqq x} {A(p + 1) \ll \frac{{{\text{log log }}x}}{x}} \sum\limits_{n \leqq x} {A(n) + \frac{{{\text{(log log 10}}x)^{\frac{c}{2} + 1} }}{{{\text{(log }}x)^{\frac{\varrho }{2}} }}} ;\] moreover, if each fi satisfies (*) with C = 0, then there is 1 > 0, such that % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% aIXaaabaGaeqiWdaNaaiikaiaadIhacaGGPaaaamaaqafabaGaamyq% aiaacIcacaWGWbGaey4kaSIaaGymaiaacMcacqWIQjspdaWcaaqaai% aabYgacaqGVbGaae4zaiaabccacaWG2baabaGaamiEaaaaaSqaaiaa% dchatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab-z% MigkaadIhaaeqaniabggHiLdGcdaaeqbqaaiaadgeacaGGOaGaamOB% aiaacMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWG2bWaaWbaaSqabe% aatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+f-a% XlaaigdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaiikaiaabY% gacaqGVbGaae4zaiaabccacaWG4bGaaiykamaaCaaaleqabaGae4x8% deVaaGymaaaaaaaabaGaamOBaiab-zMigkaadIhacqWFaCpEaeqani% abggHiLdaaaa!7A93!\[\frac{1}{{\pi (x)}}\sum\limits_{p \leqq x} {A(p + 1) \ll \frac{{{\text{log }}v}}{x}} \sum\limits_{n \leqq x} {A(n) + \frac{1}{{v^{\varrho 1} }} + \frac{1}{{({\text{log }}x)^{\varrho 1} }}} \] holds, where 3 < v < logAx. As a corollary we prove some results about the mean-value of multiplicative functions.  相似文献   

13.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

14.
Let \({\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, I = (d, \infty), \phi : I \to I}\) be unbounded continuous and increasing, X be a normed space over \({\mathbb{K}, \mathcal{F} : = \{f \in X^I : {\rm lim}_{t \to \infty} f(t) {\rm exists} \, {\rm in} X\},\hat{a} \in \mathbb{K}, \mathcal{A}(\hat{a}) : = \{\alpha \in \mathbb{K}^I : {\rm lim}_{t \to \infty} \alpha(t) = \hat{a}\},}\) and \({\mathcal{X} : = \{x \in X^I : {\rm lim} \, {\rm sup}_{t \to \infty} \|x(t)\| < \infty\}}\) . We prove that the limit lim t → ∞ x(t) exists for every \({f \in \mathcal{F}, \alpha \in \mathcal{A}(\hat{a})}\) and every solution \({x \in \mathcal{X}}\) of the functional equation $$x(\phi(t)) = \alpha(t) x(t) + f(t)$$ if and only if \({|\hat{a}| \neq 1}\) . Using this result we study behaviour of bounded at infinity solutions of the functional equation $$x(\phi^{[k]}(t)) = \sum_{j=0}^{k-1} \alpha_j(t) x (\phi^{[j]}(t)) + f(t),$$ under some conditions posed on functions \({\alpha_j(t), j = 0, 1,\ldots, k - 1,\phi}\) and f.  相似文献   

15.
We study nonoscillation/oscillation of the dynamic equation
$${(rx^\Delta)}^{\Delta}(t) + p(t)x(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$
where \({t_0 \in \mathbb{T}}\), \({{\rm sup} \mathbb{T} = \infty}\), \({r \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}^+)}\), \({p \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, {\mathbb{R}^+_0})}\). By using the Riccati substitution technique, we construct a sequence of functions which yields a necessary and sufficient condition for the nonoscillation of the equation. In addition, our results are new in the theory of dynamic equations and not given in the discrete case either. We also illustrate applicability and sharpness of the main result with a general Euler equation on arbitrary time scales. We conclude the paper by extending our results to the equation
$${(rx^\Delta)}^{\Delta}(t) + p(t)x^\sigma(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$
which is extensively discussed on time scales.
  相似文献   

16.
Let $\sigma$ denote the family of univalent functions $\[F(z) = z + \sum\limits_{n = 1}^\infty {\frac{{{b_n}}}{{{z^n}}}} \]$ in l< |z| <\infty if G(w) is the inverse of a function $F(z) \in \sigma ^'$, the expansion of G(w) in some neighborhood of w=\infty is $\[G(w) = w - \sum\limits_{n = 1}^\infty {\frac{{{B_n}}}{{{w^n}}}} \]$ It is well known that |B_1|\leq 1 for any F(z) \in \sigma ^'. Springer^[1] proved that | B_3| \leq 1 and conjectured that $\[|{B_{2n - 1}}| \le \frac{{(2n - 2)!}}{{n!(n - 1)!}}{\rm{ }}(n = 3,4, \cdots )\]$ (1) Kubota^[2] proved (1) for n=3, 4, 5. Schober^[3] proved (1) for n = 6, 7. Ren Fuyao[4,5] has verified (1) for n=6, 7, 8. In this article we are going to verify (1) for n=9.  相似文献   

17.
Multiple blow-up for a porous medium equation with reaction   总被引:1,自引:0,他引:1  
The present paper is concerned with the Cauchy problem
$\left\{{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \right.$\left\{\begin{array}{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \end{array}\right.  相似文献   

18.
The generalized weighted mean operator ${\mathbf{M}^{g}_{w}}$ is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g ?1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.  相似文献   

19.
Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
0, \mathop {\lim }\limits_{x \to + 0} \Psi (x,\mu ) = {\rm A}, \mu< 0, \hfill \\ \end{gathered}$$ " align="middle" vspace="20%" border="0">  相似文献   

20.
V. O. Bytev 《Acta Appl Math》1989,16(1):117-142
The system of differential equations which describes the motion of continuum media of gas, liquid, Reiner-Rievling-type liquid, etc., is considered.% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHbp% GCdaWgaaWcbaGaamiDaaqabaGccqGHRaWkcaqGKbGaaeyAaiaabAha% caqGOaGaeqyWdiNaaeyDaiaabMcacaqG9aGaaeimaiaabUdaaeaacq% aHbpGCcaGGBbGaaeyDamaaBaaaleaacaqG0baabeaakiabgUcaRiaa% cIcacaqG1bGaeyyXICTaey4bIeTaaiykaiaabwhacaGGDbGaeyOeI0% IaamizaiaadMgacaWG2bGaey4dIuTaaiikaiabgEGirlaabwhacaGG% PaGaey4kaSIaey4bIeTaamiCaiaacUdaaeaacaWGWbWaaSbaaSqaai% aadshaaeqaaOGaey4kaSIaaeyDaiabgwSixlabgEGirlaadchacqGH% RaWkcaWGhbGaaeizaiaabMgacaqG2bGaaeiiaiaabwhacqGHRaWkca% WGibGaeqOXdyMaeyypa0JaaGimaiaac6caaaaa!7268!\[\begin{gathered} \rho _t + {\text{div(}}\rho {\text{u) = 0;}} \hfill \\ \rho [{\text{u}}_{\text{t}} + ({\text{u}} \cdot \nabla ){\text{u}}] - div\prod (\nabla {\text{u}}) + \nabla p; \hfill \\ p_t + {\text{u}} \cdot \nabla p + G{\text{div u}} + H\phi = 0. \hfill \\ \end{gathered} \]Solving the problem of its group classification, we obtained all the state equations which lead to the expansion of the main group assumed by the initial equations under the arbitrary elements , G, H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号