首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Exposure of stationary-phase human breast carcinoma(T–47D) cells to far-UV light (254 nm) inhibited the appearance of induced ornithine decarboxylase (ODC) activity. The fluence response curve had a shoulder (D4= 2 J m-2) followed by an exponential decline (D0= 4.2 Jm-2). The cells could recover from this inhibition when the stimulus of induction of ODC was delayed for20–24 h after irradiation. Hydroxyurea (HU) when present at 3 mM during the recovery period eliminated completely the ability of the cells to recover. This effect of HU on ODC induction was partially reversed by 50 nM of the four deoxyribonucleosides required for DNA synthesis. Neither HU nor the deoxyribonucleosides by themselves affected ODC induction in unirradiated cells. Since HU inhibited the recovery from potentially lethal UV damage and is a known inhibitor of excision repair, we interpret the above results to mean that recovery from UV-induced inhibition of ODC induction depends on excision-repair of DNA damage. This interpretation is strongly supported by the finding that specific photolysis of 5-bromodeoxyuridine, incorporated into DNA during the recovery period, inhibited recovery of ODC induction from inhibition by UV light.  相似文献   

2.
Abstract— The induction and removal of DNA interstrand cross-links (CL) was studied in normal human fibroblasts (1BR/3) using the highly photoreactive furocoumarin 4,5',8-trimethylpsoralen (TMP) in combination with monochromatic 365 nm and/or 405 nm radiation. We report that the presence of large amount of furan-side monoadducts (MAf) induced by TMP plus 365 nm radiation blocks CL incision. When the amount of MAf is reduced by their conversion into even more CL, incision of the cross-links is more efficient.  相似文献   

3.
Pretreatment of human cells with near UV radiation (UVA) in fluences exceeding 5 × 104 Jm−2 caused a decrease in the amount of the unscheduled DNA synthesis induced by far UV radiation (UVC). The DNA repair synthesis, as measured by the incorporation of [3H] -thymidine, is reduced by nearly a factor of 2 for a UVA radiation exposure of 1.5 × 105 Jm−2. Since solar UVA fluence rate is rather independent of latitude, this figure corresponds to a UVA exposure time of 50-60 min from noon sunlight in the summer time.  相似文献   

4.
Cell division and DNA synthesis were studied during axenic growth following 254 nm ultraviolet light (UV) irradiation of a repair-proficient parental strain ( rad+ , D10 colony formation = 195 J/m2) and two repair mutants ( rad C. D10= 50 J/m2; rad B. D10= 5 J/m2) of Dictyostelium discoideum. Isopycnic CsCI gradients were used to distinguish uptake of labeled precursors into nuclear (n) and mitochondrial (m) DNA, using Netropsin to enhance the density resolution. In all strains, m-DNA synthesis was inhibited to a lesser extent than was n-DNA synthesis. For rad C, which has been shown in other experiments to be slow in incision and dimer removal, the UV-induced lags in division and n-DNA synthesis were longer than for rad+. However, rad B showed a more complex response. Although brief division lags were observed for < 10 J/m2, little immediate division lag was detected at greater fluences. Instead, a brief period of cell multiplication of up to but not exceeding two-fold occurred, followed by a cessation of division, and then by lysis. Fluences that yielded extensive lags in n-DNA synthesis in rad- and rad C resulted in little detectable immediate postirradiation lag in n-DNA synthesis in rad B. However, later in the postirradiation period, when DNA synthesis had resumed in rad+ and rad C. it gradually declined to near zero in rad B. We conclude: (1) that the more extended lag in division and n-DNA synthesis in rad C is consistent with its slower rate of excision repair, and (2) that rad B contains a defect resulting in less initial blockage of DNA replication by UV lesions.  相似文献   

5.
Abstract— Exposure of human cells to psoralens and near-UV light produces a mixture of monoadducts and crosslinks in DNA, which inhibit DNA synthesis by blocking replicon initiation and chain elongation. 8-Methoxypsoralen (8-MOP) has a greater effect than angelicin in normal, xeroderma pigmentosum, and Fanconi's anemia cells. Recovery of DNA synthesis is not detectable up to 8 h after exposure. The average distance between lesions that block replication in individual replicons was measured by means of bromodeoxyuridine photolysis. After exposure to 10 μg/mℓ of 8-MOP and 7500 J/m2 of near-UV light, blocks were formed every 20 μm. Replicon initiation was inhibited by exposure to near-UV light alone in normal and xeroderma pigmentosum. Exposure to low concentrations of angelicin or 8-MOP plus near-UV light inhibited replicon initiation in normal and Fanconi's anemia cells, but not in xeroderma pigmentosum cells. Inhibition of initiation was not obvious after treatment with high concentrations of 8-MOP or angelicin because of the dominant effect of crosslinks in blocking chain elongation.  相似文献   

6.
Abstract A chemical method for the identification and the quantitative detection of psoralen DNA furan-side photoadducts formed in cells is presented. It is based on an enzymatic digestion of the purified DNA extracted from the treated cells and a further separation by high performance liquid chromatography of the modified nucleosides coupled to a highly sensitive fluorescence analysis and detection. Using this method, 3-carbethoxypsoralen- DNA photoadducts formed in yeast and mammalian cells have been identified and quantified. The predominant photoadducts induced have been identified as two cis-syn dThd(564'5')3-CPs diastereoisomers. In Chinese Hamster V79 cells treated with 3-carbethoxypsoralen at 50 μM and irradiated at 365 nm with an incident dose of 24 kJ/m2, the two monoadducts could be quantitatively assessed at levels as low as 1.3 and 0.7 per 10 000 base pairs.  相似文献   

7.
Abstract— The induction of sister chromatid exchanges (SCE) and cell sensitivity in mouse myeloma cells (66.2 subclone of MPC11) by irradiation with monochromatic near-UV (365 nm) light were studied under aerobic and anaerobic conditions. Sister chromatid exchanges were studied using the fluorescence-plus-Giemsa technique, and sensitivity was determined by the ability of irradiated and nonirradiated control cells to form colonies in soft agar. Cells were found to be 16 times more sensitive to near-UV light under aerobic exposure, producing an F37 value of 7 × 104 J/m2 compared to the F37 value of 11.5 × 105 J/m2 under anaerobic conditions. The induction of SCE was also 12 times more efficient for aerobic irradiation than for anaerobic irradiation. The data suggest that the SCE-inducing potential of DNA lesions differs when near-UV irradiation is performed in the presence or absence of air. In addition, the DNA lesions responsible for lethality and also those lesions leading to SCE induction may differ under the two irradiation conditions.  相似文献   

8.
Germicidal ultraviolet light (UVC. 8–10 J/m2) induces ornithine decarboxylase (ODC) in mouse epidermal cells in vitro in a biphasic manner with maxima of 2–3 fold induction at 4–6 h and of 10–20 fold induction at 15–18 h after irradiation. At this dose of UVC overall protein synthesis is inhibited by 10–30% and RNA synthesis by 40–50%. Induction of both ODC peaks is prevented by actinomycin D or cycloheximide. Similar culture factors appear to influence the extent of ODC induction by UVC and by the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA), since the ratio of peak activities is approximately constant at 2, whereas absolute values vary considerably between experiments. If cells are irradiated with UVC and then exposed to TPA, the effects are additive at 10 J/m2, less than additive at higher and enhanced at lower doses of UVC.  相似文献   

9.
Abstract It has been suggested that butylated hydroxytoluene (BHT) , a phenolic antioxidant that conveys photoprotective properties to skin, may act by altering epidermal parameters that influence the level of ultraviolet light (UV) reaching critical target sites. The potential diminution of effective UV dose could account for the observed inhibition of UV-induced ornithine decarboxylase (ODC). Thus studies were conducted to examine the possibility that BHT was capable of promoting epidermal proliferation, just as others have shown with lung epithelial cells. UV-induction of ODC, in unrestrained Skh-Hr-I mice irradiated with Westinghouse FS–20 lamps, was shown to be linearly responsive from 0.3 to 0.6, J/cm2/dose. The degree of inhibition afforded by dietary BHT was approximately constant over this dose range. In addition, intraperitoneal administration of BHT (400 mg/kg) inhibited UV-induced ODC as greatly as when provided dietarily. Greatest inhibition occurred when BHT was administered at least 46 h prior to UV exposure, with the inhibitory event(s) requiring over 20 h to become effective. However, BHT had no effect, during this time interval, upon the incorporation of [3H]thymidine or leucine into DNA and protein, respectively. Nor were BHT effects reflected in the epidermal labeling index. These data suggest that BHT does not induce epidermal proliferation. An alternate explanation, in which the antioxidant properties of BHT play a major role, is proposed.  相似文献   

10.
Abstract— Apparent DNA-protein crosslinking induced by monochromatic 290 and 405 nm Tadiations was measured in cultured human P3 teratocarcinoma cells with DNA alkaline elution techniques. The rates of the induction of crosslinks by 290 nm radiation were the same when the cells were irradiated either aerobically or anaerobically or when the cells were in an H2O or D2O aqueous environment. With 405 nm radiation, anaerobic irradiation reduced the induction of the crosslinks (dose modifying factor is about 0.2), and about twice as many crosslinks were observed when the cells were irradiated in an environment of D2O rather than H2O. The results are consistent with the hypothesis that far-UV radiation induces DNA-protein crosslinks by a direct mechanism, whereas near-UV radiation induces crosslinks via indirect photodynamic photosensitizations in which unidentified cellular endogenous photosensitizers and reactive species of oxygen are used.  相似文献   

11.
Abstract— 3-Carbethoxypsoralen (3-CPs) has been tested in the photochemotherapy of psoriasis. It only forms monoadducts with DNA and is being considered as a non-carcinogenic alternative to 8-MOP which itself forms DNA crosslinks that arc difficult to repair. Using laser flash photolysis or pulse radiolysis, the triplet state of 3-CPs, a possible intermediate in photosensitization, has been generated in several solvents: ethanol, water and benzene. The triplet lifetime, extinction coefficient and quantum efficiency of formation have been measured. Triplet reactivities towards (i) the solvents used, (ii) 3-CPs, (iii) oxygen, (iv) tryptophan and (v) tyrosine, leading, respectively, to photoadditions with water, ethanol and 3-CPs, to 1O2, semioxidized tryptophan and semioxidized tyrosine, (vi) thymine and (vii) uracil have been investigated. The dark binding of 3-CPs to DNA has been studied by comparing the reactivity of eaq- with free 3-CPs, free DNA and the 3-CPs DNA complex. Some photophysical and photochemical properties of 4',5'di-hydro-3-carbethoxypsoralen(DH–3-CPs), model of the main fluorescent photo-product of 3-CPs, have also been investigated. Biological consequences of the photochemical properties of 3-CPs andDH–3-CPs have been studied in a cellular system (haploid yeast).  相似文献   

12.
13.
Abstract— In view of the increasing attention to 1O2 (1Δg) participation in the photodynamic action, different types of genetic changes in Saccharomyces cerevisiae by acridine orange sensitization were compared with respect to the response to N3-, a well known quencher of 1O2. The induction of mitotic crossing over with respect to ade 2 locus and mitotic gene conversion at trp 5 locus were suppressed by the addition of N3- suggesting the involvement of 1O2 as a major intermediate. However, the induction of reverse mutation at ilv 1 was only slightly suppressed. These results may indicate that there are two types of photodynamic DNA damage; one is produced via 1O2 and the other via non-1O2 reaction pathway which lead to mitotic gene conversion and mitotic crossing over, and to mutation, respectively.  相似文献   

14.
Abstract—DNA crosslinks in Escherichia coli cells. exposed to 4.5',8-trimethylpsoralen plus 360 nm light, were measured using a rapid and sensitive new approach. The assay is based on the specificity of S1 nuclease from Aspergillus oryzae to single-stranded DNA. Bacterial cells were lysed and the DNA denatured by alkali. Following acid neutralization. crosslinked DNA undergoes spontaneous renaturation and is rendered S1-nuclease resistant and therefore acid-precipitable. The single-stranded fraction after denaturation by alkali decreases with increasing near UV light exposure in the presence of TMP following first order kinetics. The kinetics were faster when exposure was at 4°C rather than at 20°C. This suggests that excision of crosslinks occurs during exposure at the higher temperature. Indeed. since the rate of DNA crosslinking in a uvr B mutant which is excision-deficient was higher than in wild type bacteria at 4°C, some excision must have occurred even in the cold. DNA from excision-proficient cells incubated at 37°C following exposure to TMP-plus-near UV at 4° showed a greater single stranded fraction than that from non-incubated cells. This indicates repair of DNA crosslinks. which proceeded with a half-time of 8 min at 37°C and was unaffected by substitution of thymine in DNA by 5-bromouracil.  相似文献   

15.
Abstract —In vivo participation of singlet excited oxygen (1O2, 1Δ9) in the photodynamic inactivation and induction of genetic changes (gene conversion) in acridine orange-sensitized yeast cells was investigated by using N3-, an efficient 1O2 quencher, and D2O, a known agent for the enhancement of the lifetime of 1O2. The addition of N3- protected the cells from both photodynamic actions. From an analysis of the concentration-dependent protection, about 80% of the induction of the genetic change is explainable on the basis of 1O2 mechanism. The quantitative estimation of the N3- protection in the inactivation was not possible because of the sigmoidal nature of the inactivation curve. The replacement of H2O with D2O during illumination was effective in enhancing the photodynamic inactivation but almost completely ineffective for the gene conversion induction. The deuterium effect with the cell system was clearly not as large as would be expected from in vitro experiments. This, however, could be explained from the kinetic consideration that natural quenchers of lO2 in the cell would mask the deuterium effect. By experiments with different cell stages it was demonstrated that these two modifying effects were dependent on the intracellular reaction environment. The conclusion is that 1O2 must be the major intermediate responsible for the photodynamic actions in acridine orangesensitized yeast cells.  相似文献   

16.
Abstract— The ability of UV-irradiation (254 nm) to induce formation of RNA-protein crosslinks in tobacco mosaic virus (TMV) particles have been studied by Cs2SO4 density gradient centrifugation, analytical centrifugation, nitrocellulose filter binding and two-dimensional peptide mapping. RNA-protein crosslinks were found to be formed on UV-irradiation of TMV, but the parallel process of UV-induced RNA chain breakage complicated their quantitation. Using speciall devised equations, the quantum yield of RNA-protein crosslink formation was found to be 0.65 × 10−5 and that of RNA chain break formation 0.95 × 10−5.  相似文献   

17.
In the pea plant ( Pisum sativum ), compounds that intercalate into DNA induce the production of ∼20 major proteins similar to the pattern induced during nonhost disease resistance to the bean fungal pathogen, Fusarium solani f.sp. phaseoli . The pea phytoalexin, pisatin, as well as RNA homologous to several disease-resistance response (DRR) genes accumulate following treatment with these compounds. Psoralen was chosen to characterize this interaction further because it intercalates into DNA and, following irradiation with 365 nm UV light (UV365), forms covalent bonds with pyrimidines on either or both strands of DNA. This produces monoadducts or cross-links, respectively. Dose experiments showed that 60 μg/mL 4'-aminomethyl-4,5',8-trimethylpsoralen followed by 18 J/cm2 UV365 was sufficient to produce an accumulation of pisatin similar to that produced in response to the fungus. Under these inducing conditions, there was an average of 0.19 adducts per kb of pea genomic DNA. The accumulation of pisatin and the RNA of several DRR genes by psoralen required photoactivation, which suggests that covalent binding to DNA was necessary for induction. As the promoters of several putative fungal-induced pea genes contain long stretches of d(AT)n, which is the preferred psoralen photobinding site, restriction fragments spanning DRR genes were examined after in vivo psoralen treatment. The rate of crosslinking was compared between fungal-induced and noninduced genes using a modified Southern blot analysis. Implications of the induction of the DRR due to psoralen binding are discussed.  相似文献   

18.
Abstract The plasma membrane has been implicated as a critical target of photodynamic action on cells. We have observed that the photosensitization of human cerebral glioma (U-87 MG) cells by hematoporphyrin derivative (HpD) causes a large increase in intracellular calcium [Ca2+]. This increase in [Ca2+]i was solely due to the influx of extracellular Ca2+ through the plasma membrane and showed a dependence on HpD concentration, light dose and concentration of calcium in the extracellular medium. The magnitude of the Ca2+ influx decreased with increasing postirradiation time, which suggests that the cell membrane partially recovers from the photodynamic injury. The photoinduced Ca2+ influx was inhibited by the Ca2+ channel blocker diltiazem and the reducing agent dithioerythritol. These findings are discussed in terms of possible activation of a Ca2+ channel as a result of photosensitization.  相似文献   

19.
Abstract— The skin photosensitizing furocoumarins, 8-methoxypsoralen (MOP) and 4,5',8-trimethylpsoralen (TMP), inactivate E. coli ribosomes in vitro , on UV irradiation at 313 nm. Purging the solutions with N2 protects the ribosomes considerably against photoinactivation (75% with MOP and 80% with TMP). In air, the ribosome photoinactivation is mainly due to singlet oxygen (1O2), since the presence of NaN3 and other 1O2 quenchers protects the system and the inactivation is enhanced in D2O. Although 1O2 dominates as the inactivating species, the possibility of additional (∼15%) minor mechanisms involving free radicals exists. However, O-2 does not appear to be the damaging species, since superoxide dismutase does not provide any protection.
Photosensitization of the partially purified enzyme, phe-tRNA-synthetase with MOP or TMP shows inactivation and protection curves similar to those seen with the ribosomes. On the other hand, unfrac-tionated tRNAphc is not photosensitized under similar conditions, although it shows self-photosensitization. It is likely that in the furocoumarin-sensitized ribosomes, the primary events of photoinactivation are associated with the proteins.  相似文献   

20.
Abstract— The rapid bimolecular reaction SO + O3= SO2+O2+ 106 kcal/mole
yields electronically excited SO2 in the 3B 1 and 1B2 states with some vibrational excitation, as well as SO2 in its electronic ground state. It is shown that k1 = 1.5 x 1012 exp (-2100/ RT ) cm2 mole-1 s-1 and that the formation of electronically excited SO2 involves higher activation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号