首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
 对于天然镁铝石榴子石(Pyrope),在0~25.3 GPa压力条件下,在美国布鲁克海汶(Brookhaven)国家实验室国家同步辐射实验站,利用金刚石压腔装置(DAC),进行了角散X 射线粉末衍射的高压原位测量,获得了天然镁铝石榴子石随压力变化的衍射图谱。采用Materials Studio软件的Refinement模块对衍射图谱进行了分析,得到了镁铝石榴子石的晶胞参数及其随压力的变化,进而利用Birch-Murnaghan状态方程进行数值拟合,得到了镁铝石榴子石的零压体弹模量B0=199 GPa(B′0=4)。  相似文献   

2.
 采用同步辐射能量色散X射线衍射技术、激光加热技术和金刚石对顶砧(DAC)高压装置,在温度为2 000 K和压力为23 GPa的范围内,对采自地幔二辉橄榄岩中的顽火斜方辉石,进行了原位的高温高压能量色散X射线衍射(EDXRD)测量。实验结果表明:当压力为15.3 GPa、温度为1 600 K时(相当于地球内部410 km处的地震波不连续界面的温压环境),顽火斜方辉石转变为橄榄石的β相——瓦兹利石(Wadsleyite)相;继续加温加压至2 000 K、23 GPa时(相当于地球内部670 km处的地震波不连续界面的温压环境),顽火斜方辉石相变为钛铁矿(Ilmenite)结构和钙钛矿(Perovskite)结构的混和相。实验结果进一步证明,在地幔中存在的两个地震波不连续界面是由橄榄石、顽火斜方辉石等矿物的相变引起的。  相似文献   

3.
 对β-FeSi2晶体进行了原位X射线衍射高压研究。利用同步辐射X射线衍射原位研究了β-FeSi2的高压相演化,发现压力在4.3 GPa时出现相变,在25.8 GPa时相变完成。指标化结果表明:经高压处理后得到的产物具有四方结构,其晶格常数为:a=b=1.004 9 nm,c=0.339 4 nm。  相似文献   

4.
超高压下CsBr的结构与相变   总被引:2,自引:2,他引:0       下载免费PDF全文
 采用金刚石对顶压砧高压装置(DAC)、同步辐射X光源和能散法,对CsBr粉末样品进行了原位高压X光衍射实验,最高压力达115 GPa。观测到在53 GPa左右压力下,CsBr的最强衍射峰(110)劈裂成两个峰,标志了简单立方结构向四方结构的转变;在0至最高压力范围内(相应于V/V0为1至0.463)测量了晶轴比c/a;在115 GPa内未观测到样品的金属化现象。  相似文献   

5.
在金刚石压腔高压装置(DAC)上采用同步辐射角度色散X射线衍射技术,在室温、最高压力9.16GPa条件下,对天然绿帘石进行了状态方程研究。在实验压力范围内,未观察到绿帘石发生相变。通过Birch-Murnaghan状态方程,对所获得的实验数据进行了状态方程拟合,获得了天然绿帘石的体弹模量值为116(7)GPa,体弹模量的压力导数值为7.8(8),若将体弹模量的压力导数值固定为4,获得绿帘石的体弹模量值为132(4)GPa。另外,绿帘石存在较为明显的轴向压缩各向异性:c轴方向压缩系数最大,b轴方向压缩系数最小,说明天然绿帘石在c轴方向更易于压缩,而b轴方向最抗压。  相似文献   

6.
 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-ρ关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grüneisen参数γ。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K′0S=4.20(5),其ρ0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。  相似文献   

7.
 本文采用在位的(in situ)高压X光衍射方法研究了近50 GPa和室温下三方结构NiO的等温压缩行为,并用Murnaghan状态方程对实验值进行了最小二乘法拟合,得到的NiO室温状态方程的相应参量分别为:B0=223 GPa,B0'=4.21。在室温压力范围内没有观察到第一类结构相变。NiO在六方指标下的轴比c/a随压力的变化在实验压力范围内可用c/a=2.450~1.569×10-3(GPa)近似描述。  相似文献   

8.
镁橄榄石和顽辉石的高温高压合成   总被引:1,自引:0,他引:1       下载免费PDF全文
 用国产六面顶压机,在温度为1 000~1 500 ℃和压力为2~5 GPa的高温高压条件下,对氧化镁(MgO)和二氧化硅(SiO2)混合粉末样品进行了处理。通过对所得产物的观察与X射线衍射分析结果表明,在较宽的压力范围内,可以得到镁橄榄石(Mg2SiO4)单晶体和顽辉石(MgSiO3)单晶体。讨论了地幔物质镁橄榄石(Mg2SiO4)和顽辉石(MgSiO3)的生成条件、生长特性及相变关系。  相似文献   

9.
 在60~110 GPa冲击压力(估算温度为2 300~4 800 K)范围内进行了5发原始样品为(Mg0.92,Fe0.08)SiO3顽火辉石的冲击压缩回收实验,对回收样品进行的X射线衍射(XRD)和红外吸收光谱(IR)分析结果表明:(1)回收样品的主相均是单链状结构硅酸盐,而非钙钛矿结构;(2)回收样品中均未观察到氧化物SiO2和(Mg0.92,Fe0.08)O的XRD 和IR特征谱线;(3)回收样品的XRD、IR特征谱线变得简略,并发现了与原始样品有某些不同的特征谱线,随冲击压力增加,这种变化趋于明显;(4) 通过对比冲击压力在85 GPa以下和97 GPa以上回收样品的XRD、IR特征谱线,没有观察到明显的新谱线特征出现。结合先前的冲击Hugoniot状态方程实验数据分析,可以认为:在冲击压缩过程中样品处于钙钛矿结构,在冲击卸载过程中样品发生了由钙钛矿结构向单链状结构的逆转相变;特别是,在实验的温度压力范围内,不可能发生由(Mg0.92,Fe0.08)SiO3向SiO2和(Mg0.92,Fe0.08)O的化学分解相变,顽火辉石的高压相——钙钛矿结构是稳定的。回收样品和原始样品的谱线差异可能对应于高压加载或卸载过程引起的某种晶格畸变,而高压加载导致钙钛矿型顽火辉石晶格畸变的可能性更大。这一结果将对下地幔矿物学模型的建立和下地幔地震波探测结果的解释提供基础物理依据。  相似文献   

10.
 采用固态高温烧结反应方法,成功合成出了陨硅镍铁石样品(Fe0.03Ni0.97)8(Si0.79P0.21)3。X射线衍射结果表明,合成样品的结构为R3'c,对应的晶胞参数为a=b=0.663 8(1) nm,c=3.789 2(2) nm,V=1.446 15(6) nm3。在室温下,对样品进行原位高压X射线衍射研究,实验最高压力达到21.3 GPa,随着压力的升高,晶胞体积逐渐减小,但并没有观察到结构相变。利用Birch-Murnaghan状态方程对体积与压力的关系进行拟合,获得常温常压下的体积V0=1.441 4(24) nm3,体积模量K0=220(7) GPa。晶轴与压力的关系利用Murnaghan状态方程拟合,获得a轴和c轴的模量分别为Ka=257(9)和Kc=165(4),c轴较a轴容易压缩。  相似文献   

11.
Elastic properties of three high pressure polymorphs of CaCO_3 are investigated based on first principles calculations.The calculations are conducted at 0 GPa–40 GPa for aragonite, 40 GPa–65 GPa for post-aragonite, and 65 GPa–150 GPa for the P2_1/c-h-CaCO_3 structure, respectively. By fitting the third-order Birch–Murnaghan equation of state(EOS), the values of bulk modulus K_0 and pressure derivative K~'_0 are 66.09 GPa and 4.64 for aragonite, 81.93 GPa and 4.49 for post-aragonite, and 56.55 GPa and 5.40 for P2_1/c-h-CaCO_3, respectively, which are in good agreement with previous experimental and theoretical data. Elastic constants, wave velocities, and wave velocity anisotropies of the three highpressure CaCO_3 phases are obtained. Post-aragonite exhibits 25.90%–32.10% V_P anisotropy and 74.34%–104.30% V_S splitting anisotropy, and P2_1/c-h-CaCO_3 shows 22.30%–25.40% V_Panisotropy and 42.81%–48.00% V_S splitting anisotropy in the calculated pressure range. Compared with major minerals of the lower mantle, CaCO_3 high pressure polymorphs have low isotropic wave velocity and high wave velocity anisotropies. These results are important for understanding the deep carbon cycle and seismic wave velocity structure in the lower mantle.  相似文献   

12.
We have developed a double stage diamond anvil cell (ds-DAC) technique for reproducible pressure by precisely fabricating 2nd stage anvils using a focused ion beam system. We used 2nd stage micro-anvils made of ultra-fine (V/V0?=?0.633 for the smallest d-spacing. The calculated pressure for this minimum volume varies from 430 to 630?GPa, depending on the choice of the equation of state of rhenium. We conclude that the most likely pressure achieved for the minimum volume of rhenium is in a range of 430–460?GPa based on a calibration using the platinum pressure scale to 280?GPa and the latter value of 630?GPa is unreasonably high, suggesting that the pressures in an earlier study for the equation of state of rhenium would have been significantly overestimated.  相似文献   

13.
 使用两种不同的高压在位X光衍射法,研究了用爆炸法合成的纤锌矿型氮化硼(wBN)在室温下的等温状态方程。一种方法是用转靶X光角色散粉末衍射法,研究了它在0~40 GPa压力范围内的等温压缩行为。结果表明,wBN在0~40 GPa的压力范围内是稳定的,没有发生结构相变。通过p-V数据对Murnaghan方程拟合,得到wBN在p=0时的等温体模量B0=(335±34) GPa及其对压力的一阶导数B0'=4.21;另一种是用同步辐射X光能量色散衍射法,研究了它在0~25 GPa压力范围内的等温状态方程。实验中,使用了改进的自动加压的DAC高压装置,此装置保证了实验中衍射角θ0固定不变。将获得的p-V数据仍用Murnaghan方程拟合,得到wBN在p=0时等温体模量B0=(280±56) GPa,及其B0'=4.39。  相似文献   

14.
Abstract

High-pressure structural transition and volume compression for thallium were investigated to 45 GPa in a diamond anvil cell using the angular dispersive X-ray diffraction technique. Except for the known polymorphic transition at 3.7 GPa, no other structural change was observed in this pressure range. The equation of state of the high pressure phase has been obtained: its initial bulk modulus, B0 = 33.1 GPa, is lower by 10% than that of the hexagonal phase at normal pressure.  相似文献   

15.
J. W. Yang 《高压研究》2013,33(3):376-384
A first-principles investigation on the crystal structural and elastic properties and the equation of state of wurtzite-type cadmium selenide (w-CdSe) has been conducted using the plane-wave pseudo-potential density functional theory and the quasi-harmonic Debye model. The elastic constants, the aggregate elastic moduli, the elastic anisotropy, and Poisson's ratio under pressure have been investigated. Our calculated equilibrium lattice constants, the elastic constants, and the aggregate elastic moduli at zero pressure are in good agreement with the experimental data and other theoretical results. The variations in the compressional and shear elastic wave velocities with pressure at zero temperature up to pressure 2.7 GPa have been studied; the computed Debye temperature at zero pressure and zero temperature is in reasonable agreement with the result of Bonello et al., In addition, the equation of state of w-CdSe in the pressure range of 0–2.7 GPa and up to a temperature of 900 K has also been obtained.  相似文献   

16.
Density functional theory calculations have been performed to study the structural, electronic, absorption, and thermodynamic properties of crystalline 2,4,6‐triamino‐3,5‐dinitropyridine‐1‐oxide (TANPyo) in the pressure range of 0–50 GPa. The variation trends of the lattice constants, bond lengths, bond angles, intramolecular H‐bonds, and dihedral angles under compression show that there are two structural transformations at 17 and 38 GPa, respectively. The remarkable changes in the bond lengths indicate that there are two possible initiation decomposition mechanisms of TANPyo under compression. As the pressure increases, the intramolecular H‐bond strengthens. The obvious changes of the dihedral angles show that the planar structure of the TANPyo molecule is damaged under compression. Its absorption spectra show that as the pressure increases, the absorption coefficient of the N–H stretching decreases, while that of the O–H stretching increases. TANPyo has relatively high optical activity at high pressure. An analysis of thermodynamic properties indicates that both two structural transformations are endothermic and not spontaneous at room temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号