首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish existence and stability of multidimensional shock fronts in the vanishing viscosity limit for a general class of conservation laws with “real”, or partially parabolic, viscosity including the Navier-Stokes equations of compressible gas dynamics with standard or van der Waals-type equation of state. More precisely, given a curved Lax shock solution u0 of the corresponding inviscid equations for which (i) each of the associated planar shocks tangent to the shock front possesses a smooth viscous profile and (ii) each of these viscous profiles satisfies a uniform spectral stability condition expressed in terms of an Evans function, we construct nearby smooth viscous shock solutions uε of the viscous equations converging to u0 as viscosity ε→0, and establish for these sharp linearized stability estimates generalizing those of Majda in the inviscid case. Conditions (i)-(ii) hold always for shock waves of sufficiently small amplitude, but in general may fail for large amplitudes.We treat the viscous shock problem considered here as a representative of a larger class of multidimensional boundary problems arising in the study of viscous fluids, characterized by sharp spectral conditions rather than symmetry hypotheses, which can be analyzed by Kreiss-type symmetrizers.Compared to the strictly parabolic (artificial viscosity) case, the main new features of the analysis appear in the high frequency estimates for the linearized problem. In that regime we use frequency-dependent conjugators to decouple parabolic components that are smoothed from hyperbolic components (like density in Navier-Stokes) that are not. The construction of the conjugators and the subsequent estimates depend on a careful spectral analysis of the linearized operator.  相似文献   

2.
Viscous profiles of shock waves in systems of conservation laws can be viewed as heteroclinic orbits in associated systems of ordinary differential equations (ODE). In the case of overcompressive shock waves, these orbits occur in multi-parameter families. We propose a numerical method to compute families of heteroclinic orbits in general systems of ODE. The key point is a special parameterization of the heteroclinic manifold which can be understood as a generalized phase condition; in the case of shock profiles, this phase condition has a natural interpretation regarding their stability. We prove that our method converges and present numerical results for several systems of conservation laws. These examples include traveling waves for the Navier-Stokes equations for compressible viscous, heat-conductive fluids and for the magnetohydrodynamics equations for viscous, heat-conductive, electrically resistive fluids that correspond to shock wave solutions of the associated ideal models, i.e., the Euler, resp. Lundquist, equations.

  相似文献   


3.
The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier-Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.  相似文献   

4.
The purpose of this paper is to study the linear stability of “viscous” roll waves. These are periodic continuous traveling waves solutions of viscous perturbations of inhomogeneous hyperbolic systems. We first study the scalar case for the Burgers equation and for an inhomogeneous hyperbolic equation. Then we analyze the stability of roll waves, solutions of the shallow water equations with a real viscosity. In both cases, we first analyze the Evans function and compute an asymptotic expansion in the low frequency regime. Under a strong spectral stability condition, we prove the linear stability of viscous roll waves, solutions of the Saint Venant equations, with pointwise estimates on the Green functions.  相似文献   

5.
The existence of travelling wave solution to equations of a viscous heat conducting combustible fluid is proved. The reactions are assumed to be one step exothermic reactions with a natural discontinuous reaction rate function. The problem is studied for a general gas. Instead of assuming the ideal gas conditions we consider a general thermodynamics which is described by a fairly mild set of hypotheses. Travelling waves for detonations reduce to specific heteroclinic orbits of a discontinuous system of ODE's. The existence proof for heteroclinic orbits corresponding to weak and strong detonation waves is carried out by some general topological arguments in ODE. The uniqueness and nonuniqueness of these waves are also considered.  相似文献   

6.
In this paper, we consider the spectral stability of spatially periodic traveling wave solutions of the generalized Korteweg–de Vries equation to long‐wavelength perturbations. Specifically, we extend the work of Bronski and Johnson by demonstrating that the homogenized system describing the mean behavior of a slow modulation (WKB) approximation of the solution correctly describes the linearized dispersion relation near zero frequency of the linearized equations about the background periodic wave. The latter has been shown by rigorous Evans function techniques to control the spectral stability near the origin, that is, stability to slow modulations of the underlying solution. In particular, through our derivation of the WKB approximation we generalize the modulation expansion of Whitham for the KdV to a more general class of equations which admit periodic waves with nonzero mean. As a consequence, we will show that, assuming a particular nondegeneracy condition, spectral stability near the origin is equivalent with the local well‐posedness of the Whitham system.  相似文献   

7.
An obstacle in the use of Evans function theory for stability analysis of traveling waves occurs when the spectrum of the linearized operator about the wave accumulates at the imaginary axis, since the Evans function has in general been constructed only away from the essential spectrum. A notable case in which this difficulty occurs is in the stability analysis of viscous shock profiles. Here we prove a general theorem, the “gap lemma,” concerning the analytic continuation of the Evans function associated with the point spectrum of a traveling wave into the essential spectrum of the wave. This allows geometric stability theory to be applied in many cases where it could not be applied previously. We demonstrate the power of this method by analyzing the stability of certain undercompressive viscous shock waves. A necessary geometric condition for stability is determined in terms of the sign of a certain Melnikov integral of the associated viscous profile. This sign can easily be evaluated numerically. We also compute it analytically for solutions of several important classes of systems. In particular, we show for a wide class of systems that homoclinic (solitary) waves are linearly unstable, confirming these as the first known examples of unstable viscous shock waves. We also show that (strong) heteroclinic undercompressive waves are sometimes unstable. Similar stability conditions are also derived for Lax and overcompressive shocks and for n × n conservation laws, n ≥ 2. © 1998 John Wiley & Sons, Inc.  相似文献   

8.
A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel, whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.  相似文献   

9.

A new theoretical Evans function condition is used as the basis of a numerical test of viscous shock wave stability. Accuracy of the method is demonstrated through comparison against exact solutions, a convergence study, and evaluation of approximate error equations. Robustness is demonstrated by applying the method to waves for which no current analytic results apply (highly nonlinear waves from the cubic model and strong shocks from gas dynamics). An interesting aspect of the analysis is the need to incorporate features from the analytic Evans function theory for purposes of numerical stability. For example, we find it necessary, for numerical accuracy, to solve ODEs on the space of wedge products.

  相似文献   


10.
ABSTRACT

We consider degenerate viscous shock waves arising in systems of two conservation laws, where degeneracy describes viscous shock waves for which the asymptotic endstates are sonic to the hyperbolic system (the shock speed is equal to one of the characteristic speeds). In particular, we develop detailed pointwise estimates on the Green's function associated with the linearized perturbation equation, sufficient for establishing that spectral stability implies nonlinear stability. The analysis of degenerate viscous shock waves involves several new features, such as algebraic (nonintegrable) convection coefficients, loss of analyticity of the Evans function at the leading eigenvalue, and asymptotic time decay of perturbations intermediate between that of the Lax case and that of the undercompressive case.  相似文献   

11.
A numerical-analytical solution to problems of seismic and acoustic-gravitational wave propagation is applied to a heterogeneous Earth-Atmosphere model. The seismic wave propagation in an elastic half-space is described by a system of first order dynamic equations of the elasticity theory. The propagation of acoustic-gravitational waves in the atmosphere is described by the linearized Navier-Stokes equations. The algorithm proposed is based on the integral Laguerre transform with respect to time, the finite integral Bessel transform along the radial coordinate with a finite difference solution of the reduced problem along the vertical coordinate. The algorithm is numerically tested for the heterogeneous Earth-Atmosphere model for different source locations.  相似文献   

12.
We prove that the uniform stability at permanently acting disturbances of a given solution of the Navier-Stokes equations for viscous compressible isothermic fluid is a consequence of the uniform exponential stability of the zero solution of so-called linearized equations.The research was supported by the grant No. 201/93/2177 of Grant Agency of Czech Republic.  相似文献   

13.
The author considers the perturbed Riemann problem for a scalar ChapmanJouguet combustion model which comes from Majda’s model with a modified, bump-type ignition function proposed in the results of Lyng and Zumbrun in 2004. Under the entropy conditions, the unique solution in a neighborhood of the origin on the(x, t) plane(t > 0) is obtained. It is found that, for some cases, the perturbed Riemann solutions are essentially different from the corresponding Riemann solutions. The perturbation may transform a strong detonation into a weak deflagration in the neighborhood of the origin. Especially, it can be observed that burning happens although the corresponding Riemann solution does not contain combustion wave, which exhibits the instability for the unburnt state.  相似文献   

14.
In this article, the unidirectional travelling wave fronts for a qualitative model in combustion are studied. The model is considered for a simple RP kind of chemical reaction. By proving a general theorem of ODE's, the weak and strong detonations for exothermic reactions are shown to exist. The uniqueness of these waves are also considered.  相似文献   

15.
为渡水槽中波的模拟和传播提出了二维的数值模型.假设流动的流体为粘性、不可压缩的,并将Navier-Stokes方程和连续性方程作为控制方程.用标准的k-ε模型来模拟紊流流动;用交错网格的有限差分法,离散化Navier-Stokes方程;并用简化的标识和单元(SMAC)方法进行求解.使用活塞型波发生器生成并传播波;数值渡水槽的端部采用敞开式的边界条件.为了证明模型的有效性,进行了一些标准的试验,如顶盖驱动的方腔测试试验、单向的常速度场试验以及干燥河床上的溃坝试验.为了论证方法的性能及其精度,将所生成波的结果与已有波理论的结果进行比较.最后,采用群集技术(CT)生成网格,并提出最佳的网格生成条件.  相似文献   

16.
We derive rigorously a nonlinear, steady, bifurcation through spectral bifurcation (i.e., eigenvalues of the linearized equation crossing the imaginary axis) for a class of hyperbolic–parabolic model in a strip. This is related to “cellular instabilities” occurring in detonation and MHD. Our results extend to multiple dimensions the results of [1] on 1D steady bifurcation of viscous shock profiles; en passant, changing to an appropriate moving coordinate frame, we recover and somewhat sharpen results of [19] on transverse Hopf bifurcation, showing that the bifurcating time-periodic solution is in fact a spatially periodic traveling wave. Our technique consists of a Lyapunov–Schmidt type of reduction, which prepares the equations for the application of other bifurcation techniques. For the reduction in transverse modes, a general Fredholm alternative-type result is derived, allowing us to overcome the unboundedness of the domain and the lack of compact embeddings; this result applies to general closed operators.  相似文献   

17.
We extend the Kreiss-Majda theory of stability of hyperbolic initial-boundary-value and shock problems to a class of systems, notably including the equations of magnetohydrodynamics (MHD), for which Majda's block structure condition does not hold: namely, simultaneously symmetrizable systems with characteristics of variable multiplicity, satisfying at points of variable multiplicity either a “totally nonglancing” or a “nonglancing and linearly splitting” condition. At the same time, we give a simple characterization of the block structure condition as “geometric regularity” of characteristics, defined as analyticity of associated eigenprojections. The totally nonglancing or nonglancing and linearly splitting conditions are generically satisfied in the simplest case of crossings of two characteristics, and likewise for our main physical examples of MHD or Maxwell equations for a crystal. Together with previous analyses of spectral stability carried out by Gardner-Kruskal and Blokhin-Trakhinin, this yields immediately a number of new results of nonlinear inviscid stability of shock waves in MHD in the cases of parallel or transverse magnetic field, and recovers the sole previous nonlinear result, obtained by Blokhin-Trakhinin by direct “dissipative integral” methods, of stability in the zero-magnetic field limit. We also discuss extensions to the viscous case.  相似文献   

18.
In this paper, an effective numerical algorithm for 2.5D seismic and acoustic-gravitational wave propagation is applied to a combined “Earth-Atmosphere” model in the presence of wind in the air. Seismic wave propagation in an elastic half-space is described by a system of first-order dynamic equations of elasticity theory. The propagation of acoustic-gravitational waves in the atmosphere in the presence of wind is described by the linearized Navier-Stokes equations. The algorithm is based on the integral Laguerre transform with respect to time, the finite integral Fourier transform with respect to a spatial coordinate combined with a finite difference method for the reduced problem.  相似文献   

19.
The subinertial internal Kelvin wave solutions of a linearized system of the ocean dynamics equations for a semi-infinite two-layer f-plane model basin of constant depth bordering a straight, vertical coast are imposed. A rigid lid surface condition and no-slip wall boundary condition are imposed. Some trapped wave equations are presented and approximate solutions using an asymptotic method are constructed. In the absence of bottom friction, the solution consists of a frictionally modified Kelvin wave and a vertical viscous boundary layer. With a no-slip bottom boundary condition, the solution consists of a modified Kelvin wave, two vertical viscous boundary layers, and a large cross-section scale component. The numerical solutions for Kelvin waves are obtained for model parameters that take account of a joint effect of lateral viscosity, bottom friction, and friction between the layers.  相似文献   

20.
Two commonly used types of high-order-accuracy element-based schemes, collocation-based spectral multidomain penalty methods (SMPM) and nodal discontinuous Galerkin methods (DGM), are compared in the framework of the inviscid shallow water equations. Differences and similarities in formulation are identified, with the primary difference being the dissipative term in the Rusanov form of the numerical flux for the DGM that provides additional numerical stability; however, it should be emphasized that to arrive at this equivalence between SMPM and DGM requires making specific choices in the construction of both methods; these choices are addressed. In general, both methods offer a multitude of choices in the penalty terms used to introduce boundary conditions and stabilize the numerical solution. The resulting specialized class of SMPM and DGM are then applied to a suite of six commonly considered geophysical flow test cases, three linear and three non-linear; we also include results for a classical continuous Galerkin (i.e., spectral element) method for comparison. Both the analysis and numerical experiments show that the SMPM and DGM are essentially identical; both methods can be shown to be equivalent for very special choices of quadrature rules and Riemann solvers in the DGM along with special choices in the type of penalty term in the SMPM. Although we only focus our studies on the inviscid shallow water equations the results presented should be applicable to other systems of nonlinear hyperbolic equations (such as the compressible Euler equations) and extendable to the compressible and incompressible Navier-Stokes equations, where viscous terms are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号